Generated on Tue Jan 26 2021 00:00:00 for Gecode by doxygen 1.9.1
efpa.cpp
Go to the documentation of this file.
1 /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
2 /*
3  * Main authors:
4  * Mikael Lagerkvist <lagerkvist@gecode.org>
5  *
6  * Copyright:
7  * Mikael Lagerkvist, 2009
8  *
9  * This file is part of Gecode, the generic constraint
10  * development environment:
11  * http://www.gecode.org
12  *
13  * Permission is hereby granted, free of charge, to any person obtaining
14  * a copy of this software and associated documentation files (the
15  * "Software"), to deal in the Software without restriction, including
16  * without limitation the rights to use, copy, modify, merge, publish,
17  * distribute, sublicense, and/or sell copies of the Software, and to
18  * permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be
22  * included in all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
28  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31  *
32  */
33 
34 #include <gecode/driver.hh>
35 #include <gecode/int.hh>
36 #include <gecode/minimodel.hh>
37 
38 using namespace Gecode;
39 
45 class EFPAOptions : public Options {
46 private:
51  Driver::StringOption _permutation;
52 
53 public:
55  EFPAOptions(const char* s,
56  int v0 = 5, int q0 = 3, int lambda0 = 2, int d0 = 4)
57  : Options(s),
58  _v("v", "number of sequences", v0 ),
59  _q("q", "number of symbols", q0 ),
60  _l("l", "sets of symbols per sequence (lambda)", lambda0),
61  _d("d", "Hamming distance between sequences", d0 ),
62  _permutation("permutation", "use permutation constraints if d=4",
63  false)
64  {
65  // Add options
66  add(_d);
67  add(_l);
68  add(_q);
69  add(_v);
70  add(_permutation);
71  add(_symmetry);
72 
73  // Add permutation options
74  _permutation.add(true, "full" );
75  _permutation.add(false, "none");
76  // Add symmetry options
77  _symmetry.add(true, "true" );
78  _symmetry.add(false, "false");
79  }
81  void parse(int& argc, char* argv[]) {
82  Options::parse(argc,argv);
83  }
85  int v(void) const { return _v.value(); }
87  int q(void) const { return _q.value(); }
89  int l(void) const { return _l.value(); }
91  int d(void) const { return _d.value(); }
92 
94  bool permutation(void) const { return d() == 4 && _permutation.value(); }
96  bool symmetry(void) const { return _symmetry.value(); }
97 };
98 
99 
114 class EFPA : public Script {
115 protected:
116  int v;
117  int q;
118  int l;
119  int d;
120  int n;
121  int nseqpair;
124 
125 public:
128  : Script(opt),
129  v(opt.v()),
130  q(opt.q()),
131  l(opt.l()),
132  d(opt.d()),
133  n(q*l),
134  nseqpair((v*(v-1))/2),
135  c(*this, n*v, 1,q),
136  diff(*this, n*nseqpair, 0, 1)
137  {
138  // Matrix access
139  // q*lambda=n columns, and v rows
140  Matrix<IntVarArray> cm(c, n, v);
141  // q*lambda=n columns, and nseqpair rows
142  Matrix<BoolVarArray> diffm(diff, n, nseqpair);
143 
144  // Counting symbols in rows
145  {
146  IntArgs values(q);
147  for (int i = q; i--; ) values[i] = i+1;
148  IntSet cardinality(l, l);
149  for (int i = v; i--; )
150  count(*this, cm.row(i), cardinality, values, opt.ipl());
151  }
152 
153  // Difference variables
154  {
155  int nseqi = 0;
156  for (int a = 0; a < v; ++a) {
157  for (int b = a+1; b < v; ++b) {
158  for (int i = n; i--; ) {
159  rel(*this, cm(i, a), IRT_NQ, cm(i, b), diffm(i, nseqi));
160  }
161  ++nseqi;
162  }
163  }
164  assert(nseqi == nseqpair);
165  }
166 
167  // Counting the Hamming difference
168  {
169  for (int i = nseqpair; i--; ) {
170  linear(*this, diffm.row(i), IRT_EQ, d);
171  }
172  }
173 
174  // Symmetry breaking
175  if (opt.symmetry()) {
176  IntRelType row_less = d==0 ? IRT_EQ : IRT_LE;
177  // order rows
178  for (int r = 0; r<v-1; ++r) {
179  rel(*this, cm.row(r), row_less, cm.row(r+1));
180  }
181  // order columns
182  for (int c = 0; c<n-1; ++c) {
183  rel(*this, cm.col(c), IRT_LQ, cm.col(c+1));
184  }
185  // Set first row according to symmetry breaking
186  int color = 1;
187  int ncolor = 0;
188  for (int c = 0; c < n; ++c) {
189  rel(*this, cm(c, 0), IRT_EQ, color);
190  if (++ncolor == l) {
191  ncolor = 0;
192  ++color;
193  }
194  }
195  }
196 
197  // Permutation constraints
198  if (opt.permutation()) {
199  const int k[][4] = { // inverse indexing of the permutation
200  {0, 1, 3, 2}, // cform == 0, ((1, 2)(3, 4))
201  {1, 2, 3, 0}, // cform == 1, ((1, 2, 3, 4))
202  };
203  assert(d == 4);
204  // Constraint on each pair of rows
205  for (int r1 = 0; r1 < v; ++r1) {
206  for (int r2 = r1+1; r2 < v; ++r2) {
207  IntVarArgs row1 = cm.row(r1);
208  IntVarArgs row2 = cm.row(r2);
209  // Perm is the
210  IntVarArgs perm(d);
211  for (int i = d; i--; ) perm[i] = IntVar(*this, 0, n-1);
212  // cform is the cycle-form of the permutation
213  IntVar cform(*this, 0, 1);
214  BoolVar cformb = channel(*this, cform);
215 
216  /* Permutation mapping*/
217  // Values from row1...
218  IntVarArgs _p(2*d);
219  for (int i = 2*d; i--; ) _p[i] = IntVar(*this, 1, q);
220  Matrix<IntVarArgs> p(_p, d, 2);
221  for (int i = 0; i < 2; ++i) {
222  for (int j = 0; j < d; ++j) {
223  element(*this, row1, perm[k[i][j]], p(j, i));
224  }
225  }
226 
227  // ...into values in row2
228  for (int i = 0; i < d; ++i) {
229  IntVar index(*this, 0, 2*d);
230  rel(*this, cform*d + i == index);
231  IntVar value(*this, 1, q);
232  element(*this, _p, index, value);
233  element(*this, row2, perm[i], value);
234  }
235 
236  /* Rows r1 and r2 are equal at indices not in perm */
237  // uses Boolean representations pib for perm[i]
238  BoolVarArgs p1b(*this, n, 0, 1);
239  channel(*this, p1b, perm[0]);
240  BoolVarArgs p2b(*this, n, 0, 1);
241  channel(*this, p2b, perm[1]);
242  BoolVarArgs p3b(*this, n, 0, 1);
243  channel(*this, p3b, perm[2]);
244  BoolVarArgs p4b(*this, n, 0, 1);
245  channel(*this, p4b, perm[3]);
246  for (int i = n; i--; ) {
247  // No perm-variable uses i is equivalent to the reows
248  // being equal at i
249  rel(*this, (!p1b[i] && !p2b[i] && !p3b[i] && !p4b[i]) ==
250  (row1[i] == row2[i]));
251  }
252 
253  /* Constraints for fixing the permutation */
254  // Common non-equality constraints - derangements
255  rel(*this, perm[0], IRT_NQ, perm[1]);
256  rel(*this, perm[2], IRT_NQ, perm[3]);
257  // Conditional non-equality constraints - derangment of cform 1
258  // Implements distinct(*this, perm, cformb);
259  rel(*this, perm[0], IRT_NQ, perm[2], cformb);
260  rel(*this, perm[0], IRT_NQ, perm[3], cformb);
261  rel(*this, perm[1], IRT_NQ, perm[2], cformb);
262  rel(*this, perm[1], IRT_NQ, perm[3], cformb);
263  // Common ordering-constraints - symmetry breaking
264  rel(*this, perm[0], IRT_LE, perm[1]);
265  rel(*this, perm[0], IRT_LE, perm[2]);
266  rel(*this, perm[0], IRT_LE, perm[3]);
267  // Conditional ordering constraint - symmetry breaking for cform 0
268  rel(*this, (!cformb) >> (perm[2] < perm[3]));
269  }
270  }
271  }
272 
273  branch(*this, c, INT_VAR_NONE(), INT_VAL_MIN());
274  }
275 
277  virtual void
278  print(std::ostream& os) const {
279  Matrix<IntVarArray> cm(c, n, v);
280  for (int i = 0; i < v; ++i) {
281  IntVarArgs r = cm.row(i);
282  os << r << std::endl;
283  }
284  os << std::endl;
285  }
286 
288  EFPA(EFPA& s)
289  : Script(s),
290  v(s.v),
291  q(s.q),
292  l(s.l),
293  d(s.d),
294  n(s.n),
295  nseqpair(s.nseqpair)
296  {
297  c.update(*this, s.c);
298  diff.update(*this, s.diff);
299  }
301  virtual Space*
302  copy(void) {
303  return new EFPA(*this);
304  }
305 };
306 
310 int
311 main(int argc, char* argv[]) {
312  EFPAOptions opt("Equidistant Frequency Permutation Arrays");
313  opt.ipl(IPL_DOM);
314  opt.parse(argc,argv);
315 
316  Script::run<EFPA,DFS,EFPAOptions>(opt);
317  return 0;
318 }
319 
320 // STATISTICS: example-any
void values(Home home, const IntVarArgs &x, IntSet y, IntPropLevel ipl)
Post constraint .
Definition: aliases.hpp:143
struct Gecode::@602::NNF::@65::@66 b
For binary nodes (and, or, eqv)
NNF * l
Left subtree.
Definition: bool-expr.cpp:240
int p
Number of positive literals for node type.
Definition: bool-expr.cpp:232
int n
Number of negative literals for node type.
Definition: bool-expr.cpp:234
struct Gecode::@602::NNF::@65::@67 a
For atomic nodes.
NNF * r
Right subtree.
Definition: bool-expr.cpp:242
Options for EFPA problems
Definition: efpa.cpp:45
int v(void) const
Get v, number of sequences.
Definition: efpa.cpp:85
void parse(int &argc, char *argv[])
Parse options from arguments argv (number is argc)
Definition: efpa.cpp:81
bool symmetry(void) const
Whether to use symmetry breaking.
Definition: efpa.cpp:96
int q(void) const
Get q, number of symbols.
Definition: efpa.cpp:87
int l(void) const
Get lambda, sets of symbols per sequence.
Definition: efpa.cpp:89
int d(void) const
Get d, Hamming distance between sequences.
Definition: efpa.cpp:91
EFPAOptions(const char *s, int v0=5, int q0=3, int lambda0=2, int d0=4)
Initialize options for example with name s.
Definition: efpa.cpp:55
bool permutation(void) const
Whether to use permutation constraints. Only active if d=4.
Definition: efpa.cpp:94
Example: Equidistant Frequency Permutation Arrays
Definition: efpa.cpp:114
int v
Number of sequences.
Definition: efpa.cpp:116
IntVarArray c
Variables for sequences.
Definition: efpa.cpp:122
int d
Hamming distance between any pair of sequences.
Definition: efpa.cpp:119
int main(int argc, char *argv[])
Main-function.
Definition: efpa.cpp:311
int nseqpair
Number of sequence pairs ( )
Definition: efpa.cpp:121
int n
Length of sequence ( )
Definition: efpa.cpp:120
EFPA(const EFPAOptions &opt)
Actual model.
Definition: efpa.cpp:127
int q
Number of symbols.
Definition: efpa.cpp:117
int l
Number of sets of symbols for a sequence ( )
Definition: efpa.cpp:118
BoolVarArray diff
Differences between sequences.
Definition: efpa.cpp:123
virtual void print(std::ostream &os) const
Print instance and solution.
Definition: efpa.cpp:278
EFPA(EFPA &s)
Constructor for cloning s.
Definition: efpa.cpp:288
virtual Space * copy(void)
Copy during cloning.
Definition: efpa.cpp:302
void parse(int &argc, char *argv[])
Parse options from arguments argv (number is argc)
Definition: options.cpp:548
Passing Boolean variables.
Definition: int.hh:712
Boolean variable array.
Definition: int.hh:808
Boolean integer variables.
Definition: int.hh:512
Parametric base-class for scripts.
Definition: driver.hh:729
String-valued option (integer value defined by strings)
Definition: driver.hh:174
void value(int v)
Set default value to v.
Definition: options.hpp:58
void add(int v, const char *o, const char *h=NULL)
Add option value for value v, string o, and help text h.
Definition: options.cpp:138
Unsigned integer option.
Definition: driver.hh:229
void value(unsigned int v)
Set default value to v.
Definition: options.hpp:91
Passing integer arguments.
Definition: int.hh:628
Integer sets.
Definition: int.hh:174
Passing integer variables.
Definition: int.hh:656
Integer variable array.
Definition: int.hh:763
Integer variables.
Definition: int.hh:371
Matrix-interface for arrays.
Definition: minimodel.hh:2161
Slice< A > col(int c) const
Access column c.
Definition: matrix.hpp:183
Slice< A > row(int r) const
Access row r.
Definition: matrix.hpp:177
Options for scripts
Definition: driver.hh:366
void ipl(IntPropLevel i)
Set default integer propagation level.
Definition: options.hpp:216
Computation spaces.
Definition: core.hpp:1742
void update(Space &home, VarArray< Var > &a)
Update array to be a clone of array a.
Definition: array.hpp:1013
void channel(Home home, FloatVar x0, IntVar x1)
Post propagator for channeling a float and an integer variable .
Definition: channel.cpp:41
void count(Home home, const IntVarArgs &x, int n, IntRelType irt, int m, IntPropLevel)
Post propagator for .
Definition: count.cpp:40
void element(Home home, IntSharedArray c, IntVar x0, IntVar x1, IntPropLevel)
Post domain consistent propagator for .
Definition: element.cpp:39
void linear(Home home, const FloatVarArgs &x, FloatRelType frt, FloatVal c)
Post propagator for .
Definition: linear.cpp:41
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVal n)
Propagates .
Definition: rel.cpp:43
IntRelType
Relation types for integers.
Definition: int.hh:925
@ IRT_EQ
Equality ( )
Definition: int.hh:926
@ IRT_NQ
Disequality ( )
Definition: int.hh:927
@ IRT_LE
Less ( )
Definition: int.hh:929
@ IRT_LQ
Less or equal ( )
Definition: int.hh:928
@ IPL_DOM
Domain propagation Options: basic versus advanced propagation.
Definition: int.hh:979
IntValBranch INT_VAL_MIN(void)
Select smallest value.
Definition: val.hpp:55
IntVarBranch INT_VAR_NONE(void)
Select first unassigned variable.
Definition: var.hpp:96
Gecode::FloatVal c(-8, 8)
Gecode::IntArgs i({1, 2, 3, 4})
Gecode::IntSet d(v, 7)
const int v[7]
Definition: distinct.cpp:259
Multi _d(Gecode::IntArgs({3, 2, 1}))
Options opt
The options.
Definition: test.cpp:97
LinIntExpr cardinality(const SetExpr &e)
Cardinality of set expression.
Definition: set-expr.cpp:817