Macaulay2 » Documentation
Packages » NumericalSchubertCalculus :: PieriRootCount
next | previous | forward | backward | up | index | toc

PieriRootCount -- the number of solutions to a generic Pieri problem

Description

The example below computes the number of linear curves which produce 2-planes that meet 2*3 + 1*(2 + 3) = eleven generic 3-planes at some eleven distinct interpolation points.

i1 : r := PieriRootCount(3,2,1);
i2 : print r
55

Ways to use PieriRootCount:

  • PieriRootCount(ZZ,ZZ,ZZ)

For the programmer

The object PieriRootCount is a method function with options.


The source of this document is in NumericalSchubertCalculus/PHCpack-LRhomotopies-doc.m2:281:0.