We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : elapsedTime T=carpetBettiTable(a,b,3)
-- .0037389s elapsed
-- .00915137s elapsed
-- .0317572s elapsed
-- .0148403s elapsed
-- .00492075s elapsed
-- .515216s elapsed
0 1 2 3 4 5 6 7 8 9
o2 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : BettiTally
|
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o3 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i4 : elapsedTime T'=minimalBetti J
-- .277267s elapsed
0 1 2 3 4 5 6 7 8 9
o4 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o4 : BettiTally
|
i5 : T-T'
0 1 2 3 4 5 6 7 8 9
o5 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o5 : BettiTally
|
i6 : elapsedTime h=carpetBettiTables(6,6);
-- .00633569s elapsed
-- .0215826s elapsed
-- .131334s elapsed
-- 1.20204s elapsed
-- .494521s elapsed
-- .0483197s elapsed
-- .00885674s elapsed
-- 7.81841s elapsed
|
i7 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o7 : BettiTally
|
i8 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o8 : BettiTally
|