ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 14.2.5.9
April 16, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 16, 2025

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument lists all deprecated functionality in Erlang/OTP. For more information regarding the strategy regarding
deprecations see the documentation of Support, Compatibility, Deprecations, and Removal.

1.1.2 OTP 26

Functions Deprecated in OTP 26

 dbg: stop_cl ear/ 0 (use dbg:stop/0 instead)

e disk_log:inc_wap_fil e/l (usedisk log:next file/linstead)
« file:pid2nane/ 1 (thisfunctionality isno longer supported)

1.1.3 OTP 25

Functions Deprecated in OTP 25

e crypto:crypto_dyn_iv_init/ 3 (seethedocumentation for details)

e crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)
e ct_slave: / _ (use?CT_PEER(), or the 'peer' module instead)

e slave: /_(usethe'peer module instead)

1.1.4 OTP 24
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and is scheduled for removal in OTP 26. That is, as of OTP 26, support for large node container
data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26, the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocol. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

?NO_APP macro
The 2NO_APP macro in the edoc include fileedoc_docl et . hr| has been deprecated.

Functions Deprecated in OTP 24

e erl ang: phash/ 2 (use erlang:phash2/2 instead)
e zlib:adl er32/ 2 (useerlang:adler32/1 instead)
e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Deprecations

e zlib:adl er32_comnbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e zlib:inflateChunk/1 (usesafelnflate/2 instead)
 zlib:inflateChunk/ 2 (use safelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture rel ease)

1.1.5 OTP 23

Crypto Old API

The Old API is deprecated as of OTP 23 and has been removed in OTP 24.
For replacement functions see the New API.

http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module http_uri does not provide a
implementation that satisfies the RFC.

ssh

The public key algorithm ' ssh-r sa isregarded as insecure due to its usage of SHA1, and is therefore deprecated.
It will not be available by default from OTP-24.

The public key algorithm ' ssh- dss isregarded as insecure due to its usage of SHA1 and its short key length, and
is therefore deprecated. It is not available by default from OTP-23.

Distributed Disk Logs
Asof OTP 23, thedistributed di sk_| og feature has been deprecated and it has also been removed in OTP 24.

erl_interface registry

As of OTP 23, the r egi st ry functionality part of er | _i nt er f ace has been deprecated and it has also been
removed in OTP 24.

Functions Deprecated in OTP 23

e http_uri:decode/ 1 (useuri_string:unquote function instead)
e http_uri:encode/ 1 (useuri_string:quote function instead)
 httpd: parse_query/ 1 (useuri_string:dissect_query/1 instead)

1.1.6 OTP 22
VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support is as of
OTP 22 formally deprecated and has also been removed in OTP 23.

Legacy parts of erl_interface

Theold legacy er | _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

theer| _i nterface library with the use of theei library which alsoispart of theer | _i nt er f ace application.
Theoldlegacy er| _i nt er f ace library has aso been removed in OTP 23.
System Events

The format of "System Events" as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events",
needs to be changed.

Inthewake of thisthefunction sys.get_debug/3 that returns datawith undocumented and internal format (and therefore
ispractically useless) has been deprecated, and anew function sys.get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

Functions Deprecated in OTP 22

* net:broadcast/ 3 (userpc:eva_everywhere/3 instead)

e net:call/4 (userpc:.call/4instead)

 net:cast/ 4 (userpc:.cast/4 instead)

* net: ping/ 1 (usenet_adm:ping/1 instead)

e net:sleep/1 (use'receive after T -> ok end' instead)

e sys:get_debug/ 3 (incorrectly documented and only for internal use. Can often be replaced with
sys.get_log/1)

1.1.7 OTP 20

Functions Deprecated in OTP 20
e crypto:rand_uniform 2 (userand:uniform/1 instead)
e gen_fsm _/ _(usethe'gen_statem' module instead)

1.1.8 OTP 19
SSL/TLS

For security reasons SSL-3.0 is ho longer supported by default, but can be configured.
Functions Deprecated in OTP 19

e queue: | ai t/ 1 (usequeueliat/l instead)
« random _/ _ (usethe'rand' module instead)

1.1.9 OTP 18

erlang:now/0

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now 0.

httpd_conf module

API functions in the module ht t pd_conf was deprecated in favor of standard modulessuch asl i st s, stri ng,
filelib,anderl ang.

Functions Deprecated in OTP 18

* erlang: now 0O (seethe"Time and Time Correction in Erlang" chapter of the ERTS User's Guide for more
information)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.2 Removed Functionality

1.1.10 OTP 16

Functions Deprecated in OTP 16
« wxCal endar Ctrl: enabl eYear Change/ 1 (not availablein wxWidgets-2.9 and later)
e wxCal endar Ctrl: enabl eYear Change/ 2 (not available in wxWidgets-2.9 and later)

1.1.11 OTP 12
inets - httpd Apache config files

A new config file format was introduced.

Functions Deprecated in OTP 12

e aut h: cooki e/ 0 (use erlang:get_cookie/0 instead)

e aut h: cooki e/ 1 (use erlang:set_cookie/2 instead)

e« auth:is_auth/1 (usenet_adm:ping/1 instead)

e aut h: node_cooki e/ _ (useerlang:set_cookie/2 and net_adm:ping/1 instead)

e calendar:local time_to_universal _tine/1 (usecalendar:local_time to universa_time dst/1
instead)

1.2 Removed Functionality

1.2.1 Introduction

This document lists all removed functionality in Erlang/OTP. For more information regarding the strategy regarding
removals see the documentation of Support, Compatibility, Deprecations, and Removal.

1.2.2 OTP 26
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) was
as of OTP 24 deprecated and support for it was scheduled for removal in OTP 26. That is, as of OTP 26, support
for large node container data types will become mandatory. This also includes external term format produced by
termto_binary()/termto_iovec().

Old Link Protocol

Theold link protocol used when communicating over the Erlang distribution was as of OTP 24 deprecated and support
for it was scheduled for removal in OTP 26. As of OTP 26 the new link protocol became mandatory. That is, Erlang
nodes will refuse to connect to nodes not implementing the new link protocol.

Functions Removed in OTP 26

e code:is_nodul e_native/ 1 (HiPE has been removed)

* code: rehash/ 0 (the code path cache feature has been removed)
 disk_log:accessible | ogs/0 (usedisk log:al/0instead)

e disk_log:lclosell (usedisk_log:close/1 instead)

« disk_log:Ilclosel?2 (usedisk_log:close/1 instead)

e erts_alloc_config: /_(thismodule hasasof OTP 26.0 been removed)
o ftp:start_service/1 (useftp:open/2 instead)

« ftp:stop_service/1l (useftp:close/linstead)

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

e httpd_util:decode_hex/ 1 (useuri_string:ungquote function instead)

e httpd_ util:encode_hex/ 1 (useuri_string:quote function instead)

e httpd_util:flatlength/1 (useerlang:iolist_size/l instead)

e httpd util:hexlist to integer/1 (useerlanglist_to integer/2 with base 16 instead)
e httpd_util:integer_to_hexlist/1 (useerlang:integer to list/2 with base 16 instead)
e httpd_util:strip/1 (usestring:trim/1 instead)

e httpd_util:suffix/1 (usefilename:extension/1 and string:trim/2 instead)

1.2.3 OTP 25

Functions Removed in OTP 25

« filenane:safe_relative_path/1 (usefileib:safe relative path/2 instead)

« http_uri: parse/ 1 (useuri_string functions instead)

e http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schenme_defaul t s/ 0 (useuri_string functions instead)

e« public_key: ssh_decode/ 2 (use ssh_file:decode/2 instead)
 public_key:ssh_encode/ 2 (use ssh_fileencode/2 instead)

* public_key:ssh_hostkey_fingerprint/1 (usessh:hostkey fingerprint/1 instead)
e public_key:ssh_hostkey fingerprint/2 (usessh:hostkey fingerprint/2 instead)

1.2.4 OTP 24

erl_interface registry
Ther egi st ry functionality part of er | _i nt er f ace was as of OTP 23 deprecated and was removed in OTP 24.
Compilation of Latin-1 Encoded Erlang Files

The Erlang compiler now refuses to compile source files encoded in Latin-1 without a%80 codi ng: latin-1
comment at the beginning of the file.

igor and erl_tidy modules in syntax_tools

Thei gor ander| _ti dy modules have been removed from OTP and is now maintained by their origina author
Richard Carlsson. They can be found at github.com/richcarl/igor and github.com/richcarl/er|_tidy, respectively.

Distributed Disk Logs
Thedistributed di sk_| og feature was as of OTP 23 deprecated and was removed in OTP 24.

Old Crypto API
The Old API was removed in OTP 24. The support was formally deprecated as of OTP 23.
For replacement functions see the New API.

Megaco version 3 encoding config

The pre-release version 3 encoding configs; pr ev3a, pr ev3b and pr ev3c was removed in OTP 24. Use the full
version instead.

The (encoding) config option for thefull version, { ver si on3, 3}, will till be supported, even though itsno longer
necessary to specify it thisway.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href

1.2 Removed Functionality

Functions Removed in OTP 24

e« crypto: bl ock_decrypt/ 3 (usecrypto:crypto_one _time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? update + crypto:crypto_final instead)

e crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? update + crypto:crypto_final instead)

e crypto: cmac/ 3 (use crypto:mac/4 instead)

e crypto: cmac/ 4 (use crypto:macN/5 instead)

e« crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (usecrypto:mac fina/l instead)

e« crypto: hmac_final _n/2 (usecrypto:mac_finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next_iv/_(seethe'New and Old API' chapter of the CRY PTO User's guide)

e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream.init/_ (usecrypto:crypto_init/3 + crypto:crypto_update/2 + crypto:crypto_final/1 or
crypto:crypto_one_time/4 instead)

o« filename: find_src/_ (usefileib:find_source/1,3 instead)
e pg2: _/ _ (thismodulewasremoved in OTP 24. Use 'pg’ instead)
e ssl:cipher_suites/O0 (usecipher_suites2,3 instead)

e ssl:cipher_suites/1 (usecipher_suites/2,3 instead)

e ssl:ssl _accept/ _ (usess_handshake/1,2,3 instead)

1.2.5 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, suchaser | _i nt er f ace. Thissupport wasremoved in OTP
23. Thislimited support was formally deprecated as of OTP 22.

Legacy parts of erl_interface

The old legacy er| _i nt er f ace library (functions with prefix er | _) was removed in OTP 23. These parts of
erl _i nt er f ace hasbeeninformally deprecated for avery long time, and was formally deprecated in OTP 22. Y ou
typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which alsois part
of theer| _i nt er f ace application.

httpd_conf module

API functions in the module called ht t pd_conf was deprecated in favor of standard modules such as | i st s,
string,filelib,anderl ang. Formally deprecated as of OTP 18.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

inets - httpd Apache config files

Support for the Apache-compatible config files was removed in OTP 23. A new config file format was introduced
in OTP 12,

SSL/TLS

For security reasons SSL-3.0 is no longer supported at all.

Functions Removed in OTP 23

« erlang: get_ stacktrace/ 0 (usethenew try/catch syntax for retrieving the stack backtrace)
 httpd_conf: check_enun 2 (uselistssmember/2 instead)

e« httpd_conf: cl ean/ 1 (usestring:strip/1 instead or possibly the re modul€)

e httpd_conf: custom cl ean/ 3 (use string:strip/1 instead or possibly the re module)

e httpd_conf:is_directory/1 (usefilelib:is dir/1 instead)

e httpd conf:is filell (usefileib:is file/linstead)

e« httpd_conf: make_i nteger/ 1 (useerlang:list_to_integer/1 instead)

1.2.6 OTP 22

Functions Removed in OTP 22
e 0s_non_m b: _/_(thismodulewasremovedin OTP 22.0)

1.2.7 OTP 20

Functions Removed in OTP 20

e asnlct: decode/ _ (use Mod:decode/2 instead)

e asnlct: encode/ _ (use Mod:encode/2 instead)

e erlang: hash/ 2 (use erlang:phash2/2 instead)

e ssl:connection_info/1 (usesd:connection information/[1,2] instead)

e ssl:negotiated_next_protocol /1 (usess:negotiated protocol/1 instead)

1.2.8 OTP 19

Functions Removed in OTP 19

e core_lib:get_anno/1 (usecerl:get_ann/1 instead)

e core_lib:is_literal/1 (usecerlis litera/l instead)

e core_libris_literal _Iist/1 (usecerlis litera_list/1 instead)

e core_lib:literal _val ue/1 (usecerl:.concrete/l instead)

e core_lib:set_anno/ 2 (usecerl:set_ann/2 instead)

e erl_lint:nmodify_Iinel2 (useerl_parse:map_anno/2 instead)

e erl_parse:get_attribute/ 2 (erl_anno{column,linelocation,text}/1 instead)

e erl_parse:get_attributes/1 (erl_anno:{column,linelocation,text}/1 instead)

e erl_parse:set_|ine/2(useerl_anno:set_lineg/2)

e erl_scan:attributes_info/_ (useerl_anno:{column,linelocation,text}/1 instead)
e erl_scan:set_attribute/3 (useerl_anno:set line/2 instead)

« erl_scan:token_info/ _ (useerl_scan:{category,column,line,location,symbol,text} /1 instead)
e rpc:safe nulti_server_call/2 (userpc:multi_server call/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.3 Scheduled for Removal

e rpc:safe nulti_server_call/ 3 (userpc:multi_server call/3 instead)

1.3 Scheduled for Removal

1.3.1 Introduction

This document list al functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.3.2 OTP 29

Functions Scheduled for Removal in OTP 29

e ct_slave: /_(use?CT_PEER(), or the 'peer' module instead)
 slave: _/_ (usethe'peer module instead)

1.3.3 OTP 28

Functions Scheduled for Removal in OTP 28
e disk_log:inc_wap_ fil e/l (usedisk log:next file/linstead)

1.3.4 OTP 27

Vanilla Driver

The old previously documented support for opening a port to an external resource by passing an atom (or a string) as
first argument to open_port (), implemented by the vanilladriver, will be removed in OTP 27. This functionality
was marked as obsol ete about two decades ago and then a few years later the documentation for it was removed. If
this functionality is not used with care it might hang or crash the runtime system.

Functions Scheduled for Removal in OTP 27

e crypto:crypto_dyn_iv_init/ 3 (seethedocumentation for details)
e crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)
e dbg: stop_cl ear/ 0 (use dbg:stop/0 instead)

« file:pid2nane/ 1 (thisfunctionality isno longer supported)

e http_uri:decode/ 1 (useuri_string:unquote function instead)

e http_uri:encode/ 1 (useuri_string:quote function instead)

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e« zlib:adl er32_conbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e zlib:inflateChunk/ 1 (usesafelnflate/2 instead)

e« zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture rel ease)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

1.4 Upcoming Potential Incompatibilities

1.4.1 Introduction
This document lists planned upcoming potential incompatibilitiesin Erlang/OTP.

1.4.2 OTP 27

Fun creator pid will always be local init process

Asof OTP 27, thefunctionser | ang: f un_i nf o/ 1, 2 will dwayssay that thelocal i ni t process created all funs,
regardless of which process or node the fun was originally created on.

In OTP 28, the { pi d, _} element will be removed altogether.

Feature maybe_expr will be enabled by default

Asof OTP 27, themaybe_expr featurewill be approved and enabled by default. That means that code that usesthe
unquoted atom maybe will fail to compile. All uses of maybe as an atom will need to be quoted. Alternatively, as
a short-term solution, the maybe_expr feature can be disabled.

It is recommend to quote all uses of the atom nmaybe as soon as possible. The compiler option war n_keywor ds
can be used to emit warnings about all occurrences of maybe without quotes.

The re module will use a different regular expression engine

The functionality of module r e is currently provided by the PCRE library, which is no longer actively maintained.
Therefore, in OTP 27, we will switch to adifferent regular expression library.

The source code for PCRE used by the r e module has been modified by the OTP team to ensure that a regular
expression match would yield when matching huge input binaries and/or when using demanding (back-tracking)
regular expressions. Because of the those modifications, moving to a new version of PCRE has aways been a time-
consuming process because all of the modifications had to be applied by hand again to the updated PCRE source code.

Most likely, the new regular expression library will be RE2. RE2 guarantees that the match timeislinear in the length
of input string, and it also eschews recursion to avoid stack overflow. That should makeit possible to use RE2 without
modifying its source code. For more information about why RE2 is a good choice, see WhyRE2.

Some of implications of this change are:

* We expect that the functions in the r e module will continue to be supported, athough some of the options are
likely to be dis-continued.

* Itislikely that only pattern matching of UTF8-encoded binaries will be supported (not Latinl-encoded binaries).

e Inorder to guarantee the linear-time performance, RE2 does not support al the constructs in regular expression
patterns that PCRE do. For example, backreferences and look-around assertions are not supported. See Syntax
for a description of what RE2 supports.

e Compiling aregular expression is likely to be slower, and thus more can be gained by explicitly compiling the
regular expression before matching with it.

0.0 and -0.0 will no longer be exactly equal

Currently, the floating point numbers 0. 0 and - 0. 0 have distinct internal representations. That can be seen if they
are converted to binaries:

1> <<0.0/fl oat >>.
<<0,0,0,0,0,0,0, 0>>
2> <<-0.0/fl oat >>.
<<128,0,0,0,0,0,0, 0>>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href
href
href

1.4 Upcoming Potential Incompatibilities

However, when they are matched against each other or compared using the =: = operator, they are considered to be
equal. Thus, 0. 0 =: = -0. O currently returnst r ue.
In Erlang/OTP 27,0. 0 =: = -0. 0 will return f al se, and matching 0. 0 against - 0. O will fail. When used as

map keys, 0. 0 and - 0. O will be considered to be distinct.
The == operator will continuetoreturnt rue for0. 0 == -0. 0.

To help to find code that might need to be revised, in OTP 27 there will be a new compiler warning when matching
against 0. 0 or comparing to that value using the =: = operator. The warning can be suppressed by matching against
+0. 0 instead of 0. 0.

We plan to introduce the same warning in OTP 26.1, but by default it will be disabled.

Singleton type variables will become a compile-time error
Before Erlang/OTP 26, the compiler would silenty accept the following spec:

-spec f(Opts) -> term() when
Opts :: {ok, Unknown} | {error, Unknown}.
f(_) ->error.

In OTP 26, the compiler emits awarning pointing out that the type variable Unknown is unbound:

t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
% 6| Opts :: {ok, Unknown} | {error, Unknown}.
% | 2

In OTP 27, that warning will become an error.

Escripts will be compiled by default

Escripts will be compiled by default instead of interpreted. That means that the conpi | er application must be
available.

The old behavior of interpreting escripts can be restored by adding the following line to the script file:

-nmode(interpret).
In OTP 28, support for interpreting an escript will be removed.

-code_path_choice will default to strict

This command line option controls if paths given in the command line, boot scripts, and the code server should be
interpreted asis strict or relaxed.

OTP 26 and earlier defaultsto r el axed, which means- pa myapp/ ebi n would attempt to load - pa nyapp/
ebi nand- pa nmyapp/ myapp/ ebi n. The option will default to strict in OTP 27.

Archive fallbacks will be removed

OTP 26 and earlier allows an application to have part of its directories as regular folders and others as archives. This
functionality was previously used by reltool but it is no longer the case from OTP 26. Support for archive fallbacks
will be removed from the code server in OTP 27.

Triple-Quoted Strings

Before Erlang/OTP 27 a sequence of 3 or more double-quote characters was grouped in pairs each meaning the
empty string and if there was an odd number the last character was the start of a string. The empty strings were then
concatenated and effectively disappeared.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

In Erlang/OTP 27; 3 or more double-quote characters are interpreted as the start of a "Triple-Quoted String". See
EEP 64.

Here follows some examples of code that would change meaning. Note that all these examples before Erlang/OTP
27.0 was strange since there was no sensible reason to write like that.

"""String Content"""

%6 Was interpreted as

' "String Content" ""

%% Whi ch becones

"String Content"

%W

Woln OTP 27 it is instead a syntax error since no text is allowed
%Woon the line after an opening triple-quote

String Content

%6 Was interpreted as
String Content

9% Whi ch becomes
String Content

%96

Woln OTP 27 it is instead interpreted as a
%% Tripl e-Quoted String equivalent to
"String Content"

++ foo() ++

%% Becane

" ++ foo() ++ "

W

Woeln OTP 27 it is instead interpreted as a

%6 Triple-Quoted String (triple-or-nore) equivalent to
"++ foo() ++"

From Erlang/OTP 26.1 up to 26.2 the compiler issues awarning for a sequence of 3 or more double-quote characters
since that is amost certainly a mistake or something like a result of bad automatic code generation. If a users gets
that warning, the code should be corrected for example by inserting appropriate spaces between the empty strings, or
removing the redundant ones alltogether, which will have the same meaning before and after Erlang/OTP 27.

From Erlang/OTP 26.2 up to 27.0 thisisimproved so the compiler instead issues awarning for adjacent string literals
without intervening white space, which effectively is the same at a string start, but also covers the same situation at
astring end.

1.4.3 OTP 28

Fun creator pid will be removed

As of OTP 28, the function er | ang: f un_i nf o/ 1 will not include the { pi d, _} element and the function
erl ang: fun_i nf o/ 2 will no longer accept pi d as the second argument.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

1.4 Upcoming Potential Incompatibilities

Support for interpreting escripts will be removed
Escripts will be compiled, and it will no longer be possible to force an escript to be interpreted by using the directive
-node(interpret).

1.4.4 OTP 29

It will no longer be possible to disable feature maybe_expr

Asof OTP 29, themaybe_expr featurewill become permanent and no longer possibleto disable. All usesof maybe
as an atom will need to be quoted.

It is recommend to quote all uses of the atom maybe as soon as possible. The compiler option war n_keywor ds
can be used to emit warnings about all occurrences of maybe without quotes.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release

2.1.1 Windows
The system is delivered as a Windows Installer executable. Get it from https://erlang.or g/downloads.
Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.

Expect a command-line window to pop up with an output looking something like this:

Erl ang/ OTP 17 [erts-6.0] [64-bit] [snp:2:2]

Eshell V6.0 (abort with "G
1>

» Exit by entering the command hal t () .

2> hal t().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-26. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including macOS. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href
href

2.2 Building and Installing Erlang/OTP

Building

GNU nake
Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.
Perl 5

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

sed -- Stream Editor for basic text transformation.

Building in Git
Build the same way as when building the unpacked tar file.

Building on macOS

Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing

Aninstal | program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building

OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

f | ex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.
wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation

xsl t proc -- A command line XSLT processor.
A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdltproc2.html.

f op -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp_src_26.2.5.11.tar.gz # Assum ng bash/sh
Now change directory into the base directory and set the $ERL_TOP variable.

$ cd otp_src_26.2.5.11
$ export ERL_TOP="pwd" # Assumi ng bash/sh

Configuring
Run the following commands to configure the build:

$./configure [options]

By default, Erlang/OTP release will be installed in /usr/ 1 ocal /{bin,lib/erlang}. If you for instance
don't have the permission to install in the standard location, you can install Erlang/OTP somewhere else.
For example, to install in /opt/erlang/ 26.2.5.11/{bin,|ib/erlang}, use the --prefix=/opt/
erl ang/ 26. 2. 5. 11 option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assumi ng bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make rel ease_tests
This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd rel ease/tests/test_server
$ SERL_TOP/bin/erl -s ts install -s ts snoke_test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/t est_server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href

2.2 Building and Installing Erlang/OTP

Installing

Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]
When building the documentation you need afull Erlang/OTP-26.2.5.11 system in the SPATH.
$ export PATH=$ERL_TOP/ bi n: $PATH # Assum ng bash/ sh

For the FOP print formatter, two steps must be taken:
e Adding the location of your installation of f op in $FOP_HOVE.

$ export FOP_HOVE=/path/to/fop/dir # Assum ng bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.
$ nmake docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS environment variable to
make docs. Thecurrently availabletypesare: ht m , pdf , man and chunks. Example:

$ make docs DOC_TARGETS=chunks

Build Issues

We have sometimes experienced problemswith Oracle's| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="- Xnx<Installed amount of RAMin MB>n{
More information can be found at

e http://xmigraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

* If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make i nstall .

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

$ meke install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

$ nmake rel ease_docs RELEASE ROOT=<rel ease dir>

It is possible to limit which types of documentation is released using the same DOC_TARCETS environment variable
as when building documentation.

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mmesia

e Browsing the html pagesby loadingthepage/ usr/ 1 ocal / |i b/ er| ang/ doc/ erl ang/ i ndex. ht ml or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

* Read the embedded documentation by using the built-in shell functionsh/ 1, 2, 3orht/ 1, 2, 3.
How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from

e http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <Rel easeDir>
$ tar -zxf otp_htnl _26.2.5.11.tar.gz

Forerl -man <page> towork the Unix manual pages haveto be installed in the same way, i.e.

$ cd <Rel easeDir>
$ tar -zxf otp_man_26.2.5.11.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTPusingmake i nstal | .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using make i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e« RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called nmak e and you want to rebuild the application STDLI B, then
you could do:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href
href
href

2.2 Building and Installing Erlang/OTP

$ cd lib/stdlib; env ERL_TOP=<Dir> nake
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui I d.

Configuring

The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;

o --prefix=PATH- Specify installation prefix.

+ --disable-parallel-configure - Disable parallel execution of conf i gur e scripts (parallel
execution is enabled by default)

e --{enabl e, disabl e}-jit -Forceenabling or disabling of the JIT.

« --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)

e« --enabl e- nb4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e- nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --{enabl e, di sabl e} - pi e - Build position independent executable binaries.

e --wth-assuned-cache-1ine-size=S| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

e --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Java compiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-builtin-zlib -Usethebuilt-in source for zlib.

« --{enabl e, di sabl e}-dynani c-ssl -1i b - Enable or disable dynamic OpenSSL libraries when
linking the crypto NIF. By default dynamic linking is done unless it does not work or isif it isaWindows
system.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

* --wth-ssl =PATH- Specify base location of OpenSSL include and lib directories.

e --with-ssl-incl =PATH - Specify baselocation of OpenSSL i ncl ude directory (if different than base
location specified by --with-ssI=PATH).

e --wth-ssl-zlib=PATH- Pathto static zlib library to link the crypto NIF with. This zlib library is most
often not necessary but might be needed in order to link the NIF in some cases.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

--wi th-ssl-Iib-subdi r=RELATI VE_PATH - Specify extra OpenSSL lib sub-directory to search in
(relative to base directory).

--W t h-ssl - r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
commaor colon separated list of paths.

--with-1ibatom c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

--di sabl e-snp-requi re-nati ve-at om cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

| i bat onmi c_ops, but by passing - - di sabl e-snp-requi re-native-at om c¢cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toalow usage of nifsand drivers on OSs that do not support
dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing a comma separated list to the archives that you want to statically link. e.g. - - enabl e-
static-nifs=/home/ $USER/ ny_ni f. a. The paths have to be absolute. For drivers, the driver name has
to be the same as the filename. Y ou also have to define STATI C_ERLANG NI F_LI BNAME (seeer| _ni f
documentation) or STATI C_ERLANG_ DRI VER when compiling the .o files for the nif/driver. If your nif/driver
depends on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily
achieved by passing L1 BS=- | | i bnamne to configure.

- - Wi t hout - $app - By default all applicationsin Erlang/OTP will beincluded in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependent application.

--enabl e-getti neof day- as- os-systentti ne - Forceusage of get t i meof day() for OS system
time.

- -enabl e- pref er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monatonic time source with elapsed time during suspend.

--wi t h-cl ock-resol uti on=hi gh| | ow- Try to find clock sourcesfor OS system time, and OS
monotonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- - enabl e- ensur e- 0s- nonot oni c- ti me - Enable functionality ensuring the monotonicity of
monotonic timestamps delivered by the OS. When a non-monotonic timestamp is detected, it will be replaced
by the last delivered monotonic timestamp before being used by Erlang's time functionality. Note that you

do not want to enable this unless the OS monotonic time source on the system fails to produce monotonic
timestamps. This since ensuring the monotonicity of OS monotonic timestamps will hurt scalability and
performance of the system.

--di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

- -enabl e- ei -dynanmi c-1i b - Make erl_interface build a shared library in addition to the archive
normally built.

If you or your system has special reguirements please read the Makef i | e for additiona configuration information.

Important Variables Inspected by configure

Compiler and Linker

CC- C compiler.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href

2.2 Building and Installing Erlang/OTP

e CFLAGS - C compiler flags. Defaultsto "-g -O2". If you set it, these will be removed.
e STATI C_CFLAGS - Static C compiler flags.

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

* CPP - C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables (with the exception of DED_LDFLAGS_CONFTEST).

e DED_LD- Linker for Dynamically loaded Erlang Drivers.
 DED LDFLAGS - Linker flagsto usewith DED LD.

« DED LDFLAGS_ CONFTEST - Linker flagsto use with DED_LDin configure link testsif DED L DFLAGS
cannot be used in such tests. If not set, DED L DFLAGS will be used in configure tests.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for shared
librarieswhen linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables. |

* LFS_CFLAGS - Large file support C compiler flags.

e LFS_LDFLAGS - Largefile support linker flags.

* LFS_LI BS- Largefile support libraries.

Other Tools

* RANLIB-ranli b archiveindex tool.

e AR-ar archiving tool.

» CETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out large
file support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Updating configure Scripts

Generated conf i gur e scripts are nowadays included in the git repository.

If you modify any confi gure.in filesor theerts/acl ocal . m file, you need to regenerate conf i gur e
scripts before the changes will take effect. First ensure that you have GNU aut oconf of version 2.69 in your
path. Then execute. / ot p_bui | d update_configure [--no-conmmi t] inthe$ERL_TOP directory. The
ot p_bui I d script will verify that aut oconf isof correct version and will refuseto updatetheconf i gur e scripts
if itis of any other version.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusing the__at omi c_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

e TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi ¢_* builtins.

« If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat om c¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi ¢_ops library isinstalled using the- - wi t h-1 i bat omi ¢_ops=PATH
confi gur e switch.

* Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to be issued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other aternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j 8 # Assumi ng bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Other useful information can be found at our GitHub wiki:
e https://github.com/erlang/otp/wiki

Within Git

Build the same way as when building the unpacked tar file.
macOS (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et c/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude-f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools' viathe Downloads preference
panein Xcode.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

href
href

2.2 Building and Installing Erlang/OTP

Building with wxErlang

wxWidgets-3.2.x isrecommended for building thewx application (wxWidgets-3.0.x will alsowork). Download it from
https.//www.wxwidgets.or g/downloads or from https://github.com/wxWidgetswxWidgets. It is recommended to
use the latest release in the 3.2 series, which at the time of writing is3.2.2.1.

Note that the wxWidgets-3.3 versions are experimental, but they should also work if 3.0 compatibility is enabled by
adding - - enabl e- conpat 30 to the conf i gur e commands below.

On all other platforms, ashared library is built as follows:

$./configure --prefix=/usr/local
$ make && sudo neke install
$ export PATH=/usr/| ocal / bi n: $PATH

On Linux, astatic library is built as follows:

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo neke install

$ export PATH=/usr/ | ocal / bi n: $PATH

On macOs, a static library compatible with macOS 13 (Ventura) and later is built as follows:
$./configure --prefix=/usr/local --wth-macosx-version-m n=13.0 --disabl e-shared
$ make
$ sudo make install
$ export PATH=/usr/| ocal / bi n: $PATH

Verify that the build and installation succeeded:
$ which wx-config &% wx-config --version-full

Expected outputis/ usr/ | ocal / bi n/ wx- conf i g ononeline, followed by thefull version number. For example,
if you built version 3.2.2.1, the expected output is:

/usr/1ocal / bi n/wx-config
3.2.2.1

Build Erlang/OTP in the usual way. To verify that wx application is working run the following command:
$ erl -run wx dermp

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui |l d renpve_prebuilt_fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL_TOP/ erts/emul ator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute;
$ $ERL_TOP/ bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL_TOP/ erts/enmul ator && make $TYPE)

where $TYPE isopt , gcov, gpr of , debug, val gri nd, asan or | cnt . These different beam types are useful
for debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

$ make DESTDI R=<tnp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

href

2.2 Building and Installing Erlang/OTP

./configure --prefix=/opt/|ocal
meke
nmake DESTDI R=/tnp/erl ang-build install
cd /tnp/erlang-build/opt/local

gnu-tar is used in this exanple
tar -zcf /home/me/ny-erlang-build.tgz *
$ su -
Password: *****
$ cd /opt/|ocal
$ tar -zxf /home/ ne/ny-erlang-build.tgz

$
$
$
$
$
$

* Instal using ther el ease target. Instead of doing nake i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All instalation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/ hone/ me/ OTP rel ease
$ cd / hone/ ne/ OTP

$./Install -miniml /hone/ me/ OTP
$ nkdir -p /home/ nme/ bin
$ cd / honme/ me/ bin

$In -s /honme/ne/ OTP/ bin/erl erl

$In -s /home/ne/ OTP/ bin/erlc erlc

$ In -s /hone/ ne/ OTP/ bi n/ escri pt escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-mnimal]|-sasl] <ERL_ROOT>

where:

e -mni nmal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.
e <ERL_ROQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA _PREFI X. The content of the EXTRA _PREFI X variablewill prefix al installation paths
when doing make i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA_PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal / |i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- pref i x defaultsto - - prefi x. --prefix,

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

2.2.6 Erlang/OTP test architectures

Erlang/OTP are currently tested on the following hardware and operating systems. This is not an exhaustive list, but
wetry to keep it as up to date as possible.

Architecture

x86, x86-64
Aarch32, Aarch64
powerpc, powerpcedle

Operating system

Fedora 31

FreeBSD

macOS 10.4 - 11.2

MontaVista 4

NetBSD

OpenBSD

SLES 10, 11, 12

Sun0S5.11

Ubuntu 10.04 - 20.04

Windows 10, Windows Server 2019

2.3 Cross Compiling Erlang/OTP

Table of Contents

Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
Build and Install Procedure
» Building With configure/make Directly
e Building a Bootstrap System
e Cross Building the System
e Instaling
e Instaling Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
Building and Installing the Documentation
Testing the cross compiled system
Currently Used Configuration Variables

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 25

2.3 Cross Compiling Erlang/OTP

* Variablesfor otp_build Only

e Cross Compiler and Other Tools
» Cross System Root Locations

e Optiona Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-26. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP isthe
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and nmake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c-ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui | d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. Thebuild of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changeswithout prior notice. Current cross build system has been tested when cross compiling some Linux/
GNU systems, but has only been partly tested for more esoteric platforms.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

$ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

+ S$ERL_TOP/ xconp/ erl - xconmp-vars. sh
e $ERL TOP/erl-build-tool-vars. sh
e $ERL _TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e S$ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $SERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enabl e-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st rap; otherwise, the whole system will be built.

Cross Building the System
©)

$./configure --host=<HOST> --buil d=<BU LD> [O her Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full canonicalized CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ make/ aut oconf /
config.sub <HOST>.If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute $ERL_TOP/
make/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href

2.3 Cross Compiling Erlang/OTP

The use of <HOST> and <BUI LD> values that differ will trigger cross compilation. Note that if <HOST> and
<BUI LD> differ, the canonicalized values of <HOST> and <BUI L D> must also differ. If they do not, the configuration
will fail.

Pass the cross compilation variables as command line arguments to conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argument whenyouinvokeconf i gur e directly.
The- - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE_DI FFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
4)
$ make install DESTDI R=<TEMPORARY_PREFI X>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /| ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make install hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)
$ make rel ease RELEASE_ROOT=<RELEASE_DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. The | nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OT P requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

where:

 -m ni mal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can how either do:
(6)

« Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE D R>
$./Install -cross [-mnimal|-sasl] <ABSOLUTE_I NSTALL_DI R_ON _TARGET>

or:

()

« Packagetheinstalation in <RELEASE DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine;

$ cd <ABSOLUTE_I NSTALL_DI R ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE | NSTALL_DI R_ON_TARGET>

Building With the otp_build Script
8
$ cd $ERL_TOP
C)
$./otp_build configure --xconp-conf=<FILE> [Qher Config Args]
alternatively:
$./otp_build configure --host=<HOST> --buil d=<BUI LD> [her Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui Il d confi gure will configure both for the bootstrap system on the build machine and the cross host
system.

(10)

$./otp_build boot -a

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.3 Cross Compiling Erlang/OTP

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp_build rel ease -a <RELEASE DI R>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).
2.3.3 Building and Installing the Documentation
After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.
2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual .

$ make rel ease_tests
or
$./otp_build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/rel ease/tests/test_server/
$ $ERL_TOP/ bootstrap/bin/erl -eval 'ts:install ([{xconp,"<FILE>"}])' -s ts conpile_testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s tsinstall -s ts run all_tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use tsrun er |

-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- OS triplet will be created by $ERL_TOP/ nake/ aut oconf/ confi g. sub
$erl _xconp_buil d. If st to guess, the build system will be guessed using $ERL_TOP/ nmake/
aut oconf/confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ make/ aut oconf/
config.sub $erl _xconp_host.

e erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the cross compilation tools are prefixed by <HOST>- you probably do not need to set these variables (where
<HOST> is what has been passed as - - host =<HOST> argument to conf i gur e). Compiler and other tools can
otherwise be identified via variables passed as arguments on the command line to conf i gur e, in then xcomp file,
or as environment variables. For more information see the Important Variables Inspected by configure section of the
$ERL_TOP/HOWTO/INSTALL.md document.

Cross System Root Locations

e erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariables.

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

 erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

2.4 How to Build Erlang/OTP on Windows

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

erl _xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has"regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

erl _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both I1Pv4 and IPv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i me() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl synm({ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

erl _xconp_linux_clock gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically less than
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_memal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that accepts larger than
page size alignment.

erl _xconp_code_nodel snall - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

Introduction
Short Version

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

* Frequently Asked Questions

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are still a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
to install WSL.

The instructions apply to Windows 10 (v.1809 and later) supporting the WSL.1 (Windows Subsystem for Linux v.1)
and using Ubuntu 18.04 release.

The procedure described uses WSL as a build environment. Y ou run the bash shell in WSL and use the gnu configure/
make etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft Visual C++™,
producing a native Windows binary. Thisis the same procedure as we use to build the pre-built binaries. Why we use
VC++ and not gcc is explained further in the FAQ section.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are till named win32. Some occurrences of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_26. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions or patches to
our git project to let them find their way into the next version of Erlang. If making changes to the build system (like
makefiles etc) please bear in mind that the same makefiles are used on Unix, so that your changes don't break other
platforms. That of course goes for C-code too; system specific code residesin the SERL_TOP/ ert s/ enul at or/
sys/w n32 and$ERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The$ERL_TOP/ er t s/ ermul at or / beam
directory isfor common code.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
tools are installed, building is quite easy. We have also tried to make these instructions understandable for people
with limited Unix experience. WSL is awhole new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.

Thisisthe short story though, for the experienced and impatient:
e Get andinstal complete WSL environment

e Instal Visua Studio 2019

e Get and install windows JDK-8

e Get and install windows NSIS 3.05 or later (3.05 tried and working)

e Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d tried & working) with static libs.

e Get, build and install wxWidgets-3.2.2.1 or later (up to that version tried & working) with static libs.

* Get the Erlang source distribution (from http://www.erlang.or g/download.html) and unpack witht ar to
the windows disk for example to: /mnt/c/src/

e Install mingw-gcc, and make: sudo apt update && sudo apt install g++-mi ngw w64
gcc- m ngw w64 nake
e $ cd UNPACK DIR

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href
href

2.4 How to Build Erlang/OTP on Windows

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. till
standing in SERL_ TOPR, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_26 toot p_w n32_26 onthelast row):

$ eval “./otp_build env_wi n32 x64°
$./otp_build configure

$./otp_build boot -a

$./otp_build release -a

$./otp_build installer_wi n32

$ rel ease/wi n32/otp_wW n64 26 /S

Voilal St art->Prograns->Erl ang OTP 26- >Er | ang starts the Erlang Windows shell.

2.4.3 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need WSL (with ubuntu), Visual
Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system, OpenSSL
and wxWidgets. Well, here's some information about the different tools:

WSL: Install WSL and Ubuntu in Windows 10 https://docs.micr osoft.com/en-us/windows/wsdl/install-win10

We have used and tested with WSL -1, WSL-2 was not available and may not be preferred when building Erlang/
OTP since access to the windows disk is (currently) slower WSL-2.

Visual Studio 2019 Download and run the installer from: http://visualstudio.micr osoft.com/downloads Install
C++ and SDK packages to the default installation directory.

Java JDK 8 or later (optional) If you don't care about Java, you can skip this step. The result will bethat jinterface
is not built.

Our Java code (jinterface, ic) is tested on windows with JDK 8. Get it for Windows and install it, the JRE is
not enough.

URL: http://www.or acle.com/java/technol ogies/j avase-downloads.html
Add javac to your path environment, in my case this means:

“PATH="/mt/c/ Program Fil es/Java/jdkl. 8. 0_241/bi n: $PATH

No CLASSPATH or anything is needed. Type j avac. exe in the bash prompt and you should get a list of
available Java options.

Nullsoft NSIS installer system (optional) Y ou need thisto build the self installing package.
Download and run the installer from: URL.: http://nsis.sour cefor ge.net/download
Add 'makensis.exe' to your path environment:

“PATH="/ mt/c/ Program Fil es/ NSI S/ Bi n: $PATH
Typewhi ch nmakensi s. exe inthe bash prompt and you should get the path to the program.
OpenSSL (optional) Y ou need thisto build crypto, ssh and sdl libs.

We recommend v1.1.1d or later. There are prebuilt available binaries, which you can just download and install,
available here: URL: http://wiki.openssl.or g/index.php/Binaries

Install into C: / OpenSSL- W n64 (or C:. / OQpenSSL- W n32)
wxWidgets (optional) Y ou need thisto build wx to use gui's in debugger and observer.
Werecommend v3.2.2.1 or later. Unpack intoc: / opt / | ocal 64/ pgml wxW dgets-3.2.2.1

If the wxUSE_POSTSCRI PT isnt enabled in c:/opt/| ocal 64/ pgm wxW dget s-3. 2. 2.1/
i ncl ude/ wx/ msw/ set up. h, enableit.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href

2.4 How to Build Erlang/OTP on Windows

We recommend to enable for wxWebView wxUSEWEBVIEWEDGE.

« Download the nuget package 'Microsoft.Web.WebView?2' (Version 0.9.488 or newer)

« Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview?2 (you should have 3rdparty/
webview?2/build/native/include/WebView?2.h file after unpacking it)

e EnablewxUSEWEBVIEWEDGE inc: /opt/ | ocal 64/ pgm wxW dget s-3. 2. 2. 1/ i ncl ude/
wx/ msw/ set up. h

Build with:

C\...\> cd c:\opt\l ocal 64\ pgm wxW dget s- 3. 2. 2. 1\ bui | d\ nsw
C:\...\> nnake TARGET_CPU-and64 BUI LD=r el ease SHARED=0 DI R_SUFFI X _CPU= -f nuakefile.vc

Remove the TARGET _CPU=antd64 for 32bit build.

e Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar to unpack the source tar.gz (t ar zxf otp_src_26.tar. gz) to somewhere
onthewindowsdisk,/ mt/c/ path/to/otp_src

NOTE: It isimportant that source on the windows disk.
Set the environment ERL_ TOP to point to the root directory of the source distribution. Let'ssay | stoodin/ mmt /
¢/ src and unpackedot p_src_26. tar. gz, | then add thefollowingto . profi | e:

ERL_TOP=/mt/c/src/otp_src_26
export ERL_TOP

2.4.4 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.

Setup the environment with:

$ export PATH
$ cd /mt/c/path/to/otp_src/
$ eval “./otp_build env_wi n32 x64°

This should setup the additional environment variables.

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_wi n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/
wsl _tool s/vcand$ERL_TOP/ ert s/ etc/wi n32/ wsl _t ool s areadded first in the PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It shouldresidein SERL_TOP/ ert s/
et ¢/ wi n32/ wsl _tools.

And running cl . exe should print the Microsoft compiler usage message.

The needed compiler environment variables are setup insideot p_bui | d viaert s/ et c/ wi n32/ wsl _t ool s/
Set upWBLcr oss. bat . It contains some hardcoded paths, if your installation path is different it can be added to
that file.

2.4.5 Building and Installing
Building is easiest using the ot p_bui | d script:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

href

2.4 How to Build Erlang/OTP on Windows

$./otp_build configure <optional configure options>

$./otp_build boot -a

$./otp_build release -a <installation directory>

$./otp_build installer_win32 <installation directory> # optional

Now you will have a file called ot p_wi n32_26. exe or ot p_w n64_26. exe in the <instal |l ati on
directory>,i.e $ERL_TOP/ r el ease/ wi n32.

L ets get into more detail:

e $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable a so makes the compiler becc. sh, which wraps MSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

e $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you should have the prompt.

* $./otp_build rel ease -a - Buildsacommercia release tree from the source tree. The default is to
put itin SERL_TOP/ r el ease/ wi n32. You can give any directory as parameter, but it doesn't really matter
if you're going to build a self extracting installer too.

e $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_w n32_26. exe or ot p_wi n64_26. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to SERL_TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ rel ease/w n32/otp_w n32_26 /S

or

$ cd $ERL_TOP
$ rel ease/w n32/ ot p_wi n64_26 /S

and after a while Erlang/OTP-26 will have been installed in C: \ Program Fil es\erl 14. 2. 5. 9\, with
shortcuts in the menu etc.

2.4.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also usesal the OTP libraries in the source tree.

If you hack the emulator, you can build the emulator executable by standingin $ERL_TOP/ ert s/ enul at or and
doasimple

$ make opt

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ erts/enul at or)

$ nmake TESTROOT=/tnp/erl _rel ease rel ease

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dI | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bi n/wi n32/ er| exec. dl
cd erts/emul ator

make debug

cd ../etc

make debug

B P PP PP

and sometimes

$ cd $ERL_TOP
$ make | ocal _setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do a

1> erlang: system i nfo(systemversion).
in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.

To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL_TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 26 you have
built in the previous steps. You could aso add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ wsl _t ool s/ vc and
$ERL_TOP/ erts/etc/w n32/wsl _t ool s beforetheactua emulator in the path. A typical setting of the path
for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/ erts/etc/w n32/wsl _tool s/ vc\
:$ERL_TOP/ ert s/ et c/wi n32/ wsl _t ool s: $ERL_TOP/ boot st r ap/ bi n: $PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emul ator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tnp/erl ang_rel ease rel ease

Remember that:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.4 How to Build Erlang/OTP on Windows

Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/ wi n32, $ERL_TOP/ ert s/
emul ator/drivers/wi n32or$ERL_TOP/ ert s/ et c/ wi n32.

Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of

{wi n32, _} ->
do_wi ndows_specific();
Q her ->

do_fal |l back_or_exit()
end,

That's basically all you need to get going.

2.4.7 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runsit from within the WSL environment. All other tools needed to build Erlang are free-ware/
open source, but not the C compiler.

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actualy it'sbeen possiblein late R11-releasesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the filesis compiled using MinGW's GCC and the resulting object code is then converted
to MS VC++ compatible coff using a small C hack. It's because that particular file, beam enu. ¢ benefits
immensely from being able to use the GCC labels-as-values extension, which boosts emulator performance by
up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled using GCC. That particular
source code does not do anything system specific and actually is adopted to the fact that GCC is used to compile
it on Windows.

Q: So now theresaMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: WSL/Ubuntu is the environment, it's almost like you had a virtual Unix machine inside Windows. Configure,
given certain parameters, then creates makefiles that are used by the environment's gnu-make to built the system.
Most of the actual compilers etc are not, however, WSL tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ wsl _t ool s. They all do conversion of parameters
and switches common in the Unix environment to fit the native Windowstools. Most notableisof coursethe paths,
which in WSL are Unix-like paths with "forward slashes" (/) and no drive letters. The WSL specific command
ws| pat h isused for most of the path conversionsin aWSL environment. Luckily most compilers accept forward
slashes instead of backslashes as path separators, but one still have to get the drive letters etc right, though. The
wrapper scripts are not general in the sense that, for example, cc.sh would understand and translate every possible
gcc option and pass correct optionsto cl.exe. The principleisthat the scriptsare powerful enough to allow building
of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the development of
Erlang, and that's one of the reasons we made them into shell-scripts and not Perl-scripts. We believe they are
easier to understand and change that way.

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

INSERL_TOPR, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving al theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under WSL.

e Q: Can| build something that looks exactly asthe commercial release?

A: Yes, we use the exact same build procedure.
e Q: Which version of WSL and other tools do you use then?

A: We use WSL 1 with Ubuntu 18.04. The GCC we used for 26 was version 7.3-win32. We used Visua studio
2019, Sun's JDK 1.8.0 241, NSIS 3.05, Win32 OpenSSL 1.1.1d and wxWidgets-3.1.3.

2.5 Patching OTP Applications

2.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than already installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestag in the application resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e An Erlang/OTP installation.
« An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/

OTPinstalation.
2.5.3 Using otp_patch_apply

| Patching applicationsis aone-way process. Create a backup of your OTP installation directory before proceeding.

First of al, build the OTP source tree at $ERL_ TOP containing the updated applications.

Before applying a patch you need to do afull build of OTP in the source directory.

Configure and build all applicationsin OTP:

$ configure
$ make

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

2.5 Patching OTP Applications

or

$./otp_build configure
$./otp_build boot -a

If you have installed documentation in the OTP installation, aso build the documentation:
$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp_patch_apply -s <Dir> -i <Dir>[-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl>[... <AppN-]

-s <Dir> -- OIP source directory that contains build results.
-i <Dir> -- OIP installation directory to patch.
-l <Dir> -- Alternative OTP source library directory path(s)

containing build results of OIP applications.
Mil ti pl e paths shoul d be col on separ at ed.

-c -- Cleanup (renpbve) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environnment).

-h -- Print help then exit.

-n -- Do not install docunentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Envi ronnent Vari abl e:
ERL_LIBS -- Alternative OTP source library directory path(s)
containing build results of OIP applications.
Mil ti pl e paths shoul d be col on separ at ed.

| The complete build environment is required while running ot p_pat ch_appl y.

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of rmesi a and ssl builtin/ hone/ me/ gi t/ ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ot p type

$ otp_patch_apply -s /honme/ne/git/otp -i /opt/erlang/nmy_otp \
mesi a ssl

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

The patched applications are appended to the list of installed applications. Take a look at <l nstal | Di r>/
rel eases/ OTP- REL/ i nst al | ed_appl i cati on_ver si ons.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system_ i nformati on: sanity_check() onecan validate dependencies among applications actually loaded.

1> system.information: sanity_check().
ok

Please take alook at the reference of sanity_check() for more information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erl ang/ OTP 17 [erts-6.0] [hipe] [snp:8:8]

Eshell V6.0 (abort with *"G
1>

er | understands a number of command-line arguments, see the erl(1) manual pagein ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by caling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System

The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual page in ERTS.

Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot ()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

%erl -boot start_all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

%erl -init_debug

{progress, prel oaded}

{progress, kernel _| oad_conpl et ed}
{progress, nodul es_| oaded}
{start, heart}

{start, | ogger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe codefor and starts the applications Kernel and STDLIB.
e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL.

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nare. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -nopde enbedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded |ater by explicitly ordering the code server to do so.)

* Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.2 Error Logging

Initialy, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Nare|[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-line flags-pa Directories and-pz Directories.
Theseadd Di r ect ori es to the head or the end of the code path, respectively. Example:

% erl -pa /hone/arne/ nycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kerndl.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile .hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual page in Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9- Dec-2003:: 13: 25: 02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{mf, 1}, {shell,eval _| oop, 2}]}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
| ogger _sasl _conpati bl etot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel |ogger_|level info
Erl ang/ OTP 21 [erts-10.0] [source-13c50db] [64-bit] [snp:4:4] [ds:4:4:10] [async-threads: 1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018:: 16: 54: 19. 916404 ===
application: kernel
started_at: nonode@ohost
=PROGRESS REPORT==== 8-Jun-2018:: 16: 54: 19. 922908 ===
application: stdlib
started_at: nonode@ohost
=PROGRESS REPORT==== 8-Jun-2018:: 16: 54: 19. 925755 ===
supervi sor: {local, kernel _saf e_sup}
started: [{pid,<0.74.0>},
{id,disk_|log_sup},
{nfargs, {di sk_|l og_sup,start_link,[]}},
{restart_type, permanent},
{'shut down, 1000},
{chil d_type, supervisor}]
=PROGRESS REPORT==== 8-Jun-2018:: 16: 54: 19. 926056 ===
supervi sor: {local, kernel _saf e_sup}
started: [{pid,<0.75.0>},
{id,disk_|log_server},
{nfargs, {di sk_|l og_server,start_link,[]}},
{restart_type, permanent},
{'shut down, 2000},
{chil d_type, worker}]
Eshell V10.0 (abort with Q)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

* A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islisted in Listing of target_system.erl

3.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a . r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file

%% nysystemrel
{rel ease,
{"MYSYSTEM', "FI RST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},

{pea, "1.0"}]}.
Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).
Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /hone/user/target_system nyapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target_systemcreate("nysystent).

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

* Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10. 4/ bin/

rel eases/ FI RST/ start . boot
rel eases/ FI RST/ nysystemrel
rel eases/ nysystemrel

l'i b/ kernel -2.16. 4/
l'ib/stdlib-1.19.4/

l'i b/ sasl-2.3.4/

l'i b/ pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file, r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

e Createsthetemporary directory t mp and extractsthe tar filemysyst em t ar . gz into that directory.

* Deletesthefileser| andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

* Createsthedirectory t np/ bi n.

» Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

» Copiesthefilesepnd,run_erl ,andt o_erl| fromthedirectory t np/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

e Createsthedirectory t np/ | 0g, which is used if the system is started as embedded with the bi n/ st ar t
script.

* Createsthefilet np/ rel eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

* Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target _systeminstall ("nmysystent, "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

» Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

* Substitutes %1 NAL_ROOTDI R%and ¥&EMJ>%for / usr/ |1 ocal / er| -t ar get and beam respectively, in
thefileserl . src,start.src,andstart _erl.src of thetargetert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

e Findlythetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ mysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

* bin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FlRST/start

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er |, which
inturncallsbi n/ start _er| (roughly,start _er!| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")

e Thereleasesdirectory ("/ usr/ | ocal /erl-target/rel eases"

e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start_erl . data.

» Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system create/ 1.
Infact, if youinthe current directory create not only thefilenysyst em r el , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. confi g. sr c itwill beincluded andisnot requiredto beavalid Erlang
termfilelike sys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. conf i g to disk
before booting the release.

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version

In this exampl e the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

9% nmysyst en?. r el

{rel ease,
{"MYSYSTEM', " SECOND"'},
{erts, "6.0"},

[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},

{pea, "2.0"}]}.

Step 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea. appup
{"2.0",

' oad_nodul e, pea_l i
oad_nodul e, pea_l i

[({"1.0" [{l b}]}],
({"1.0" [{l b}1}1}.

Step 3. From the directory where the file mysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /hone/user/target_system nyapps/ pea-2. 0/ ebin

Step 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> syst ool s: make_rel up("nysystenR", ["nysystent],["nysysteni],
[{path, ["/hone/user/target_systenl myapps/ pea-1. 0/ ebin",
"/ny/old/erlang/lib/*/ebin"]}]).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option isused for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release:

2> target _systemcreate("nmysystenk").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.
3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobi n/start:

#!/ bi n/ sh
ROOTDI R=/ usr/| ocal /erl -target/

if [-z "$RELDIR"]
t hen
RELDI R=$ROOTDI R/ r el eases
fi
START_ERL_DATA=${1: - $RELDI R/ st art _er| . dat a}

$ROOTDI R/ bi n/run_er| -daenon /tnp/ $ROOTDI R/l og "exec $ROOTDI R/ bin/start_erl $ROOTDI R
$RELDI R $START_ERL_DATA - heart"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

We use the simplest possible sys. conf i g, whichwe storeinr el eases/ Fl RST:

%% sys. config
(1.

Finaly, to prepare the upgrade, we must put the new release package in ther el eases directory of the first target
system:

0s> cp nysystenR.tar.gz /usr/local/erl-target/rel eases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.1

Logscanbefoundin/ usr/| ocal / erl -target/| og. Thisdirectory is specified asan argumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok, Vsn} = rel ease_handl er: unpack_rel ease(" nysysten2").

Step 2. Install the release:

2> rel ease_handl er:install_rel ease(Vsn).

{continue_after_restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has cl osed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/rel eases/ new s
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.2

Check which releases there are in the system:

1> rel ease_handl er: whi ch_rel eases().
[{"MYSYSTEM', " SECOND",
["kernel -3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},
{"MYSYSTEM', " FI RST",
["kernel -2.16.4","stdlib-1.19.4","sasl -2.3.4","pea-1.0"],
per manent }]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

Step 3. Make the new release permanent:

2> rel ease_handl er: make_per manent (" SECOND") .

Check the releases again:

3> rel ease_handl er: whi ch_rel eases().
[{"MYSYSTEM', " SECOND",
[*kernel -3.0","stdlib-2.0","sasl-2.4", "pea-2.0"],
per manent },
{" MYSYSTEM', " FI RST",
[*kernel -2.16.4","stdlib-1.19.4", "sasl-2.3.4","pea-1.0"],
ol d}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.3 Creating and Upgrading a Target System

-nmodul e(target_systen).
-export([create/1l, create/2, install/2]).

%% Note: Rel Fil eName below is the *stent without trailing .rel,
%% . script etc.
%%

%% cr eat e(Rel Fi | eNane)

%%

create(Rel Fil eNane) ->
create(Rel Fil eNane, []).

creat e(Rel Fi | eNane, Syst ool sOpts) ->
Rel File = Rel Fil eNane ++ ".rel",
Dir = filenane: di rnane(Rel Fi |l eNane),
Pl ai nRel Fi |l eNane = filenane:join(Dir,"plain"),
PlainRel File = PlainRel Fil eNane ++ ".rel",

io:fwite("Reading file: ~ts ...~n", [RelFile]),

{ok, [Rel Spec]} = file:consult(RelFile),

io:fwite("Creating file: ~ts from~ts ...~n",
[PlainRel File, RelFile]),

{rel ease,

{Rel Nare, Rel Vsn},

{erts, ErtsVsn},

AppVsns} = Rel Spec,

Pl ai nRel Spec = {rel ease,
{Rel Nare, Rel Vsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, _}) ->

true;
({stdlib, _}) ->
true;
(0 ->
fal se

end, AppVsns)

Be
{ok, Fd} = file:open(PlainRelFile, [wite]),
io:fwite(Fd, "~p.~n", [Pl ainRel Spec]),
file:close(Fd),

io:fwite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[Pl ai nRel Fi | eNan®e, Pl ai nRel Fi | eNan®e]),
make_scri pt (Pl ai nRel Fi | eNane, Syst ool sOpt s),

io:fwite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[Rel Fi | eNane, Rel Fil eNane]),
make_scri pt (Rel Fi | eNane, Syst ool sOpt s) ,

TarFil eName = Rel Fil eNane ++ ".tar.gz",
io:fwite("Creating tar file ~ts ...~n", [TarFileNane]),
nmake_t ar (Rel Fi | eNane, Syst ool sOpt s) ,

TrpDir = filenanme:join(Dir,"tnp"),
io:fwite("Creating directory ~tp ...~n",[TnpDir]),
file:make_dir(TnpDir),

io:fwite("Extracting ~ts into directory ~ts ...~n", [TarFileNane, TnpDir]),
extract_tar(TarFil eName, TnpDir),

TrpBinDir = filenanme:join([TnpDir, "bin"]),

ErtsBinDir = filenane:join([TnpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwite("Deleting \"erI\" and \"start\" in directory ~ts ...~n",
[ErtsBinDir]),

file:delete(filenanme:join([ErtsBinDir, "erl"])),

file:delete(filename:join([ErtsBinDir, "start"])),

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

io:fwite("Creating tenporary directory ~ts ...~n", [TnpBinDir]),
file:make_dir(TnpBinDir),

io:fwite("Copying file \"~ts.boot\" to ~ts ...~n",
[Pl ai nRel Fi | eNane, filenane:join([TnmpBinDir, "start.boot"])]),
copy_file(PlainRel Fil eName++".boot", fil enane:join([TnpBinDir, "start.boot"])),

io:fwite("Copying files \"epnd\", \"run_erl\" and \"to_erl\" from\n"
"~ts to ~ts ...~n",
[ErtsBinDir, TnpBinDir]),
copy_file(filename:join([ErtsBinDir, "epnmd"]),
filename:join([TmpBinDir, "epnd"]),
copy_file(filename:join([ErtsBinDir, "run_erl"
filename:join([TnpBinDir, "run_erl"]
copy_file(filename:join([ErtsBinDir, "to_erl"]
filename:join([TrpBinDir, "to_erl"])

1

preserve]),
)

[preserve]),

1

[
]
)
)
, [preserve]),
%WoThis is needed if 'start' script created from'start.src' shall
%6 be used as it points out this directory as log dir for 'run_erl’
TrpLogDir = filenanme:join([TrpDir, "log"]),

io:fwite("Creating tenporary directory ~ts ...~n", [TnpLogDir]),
ok = file:mke_dir(TnpLogDir),

StartErlDataFile = filename:join([TnpDir, "rel eases", "start_erl.data"]),
io:fwite("Creating ~ts ...~n", [StartErl DataFile]),

StartErlData = io_lib:fwite("~s ~s~n", [ErtsVsn, RelVsn]),

wite file(StartErlDataFile, StartErlData),

io:fwite("Recreating tar file ~ts fromcontents in directory ~ts ...~n",
[Tar Fi | eNane, TnpDir]),

{ok, Tar} = erl _tar:open(TarFileNane, [wite, conpressed]),

%6 {ok, Owd} = file:get_cwd(),

Wofile:set_cwd("tnmp"),

ErtsDir = "erts-"++ErtsVsn,

er|l _tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),

er|l _tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

er|l tar:add(Tar, filenane:join(TmpDir,"rel eases"), "rel eases", []),

er|l _tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),

er|l _tar:add(Tar, filename:join(TmpDir,"log"), "log", []),

erl _tar:close(Tar),

Wofile:set_cwd(Owd),

io:fwite("Renoving directory ~ts ...~n",[TnpDir]),

renmove _dir_tree(TnpDir),

ok.

install (Rel Fil eNane, RootDir) ->

TarFile = Rel Fil eNane ++ ".tar.gz",
io:fwite("Extracting ~ts ...~n", [TarFile]),
extract _tar(TarFile, RootDir),
Start