/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2014 Ecole Normale Superieure * Copyright 2017 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat) { return mat ? mat->ctx : NULL; } /* Return a hash value that digests "mat". */ uint32_t isl_mat_get_hash(__isl_keep isl_mat *mat) { int i; uint32_t hash; if (!mat) return 0; hash = isl_hash_init(); isl_hash_byte(hash, mat->n_row & 0xFF); isl_hash_byte(hash, mat->n_col & 0xFF); for (i = 0; i < mat->n_row; ++i) { uint32_t row_hash; row_hash = isl_seq_get_hash(mat->row[i], mat->n_col); isl_hash_hash(hash, row_hash); } return hash; } __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx, unsigned n_row, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = NULL; mat->block = isl_blk_alloc(ctx, n_row * n_col); if (isl_blk_is_error(mat->block)) goto error; mat->row = isl_calloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; if (n_col != 0) { for (i = 0; i < n_row; ++i) mat->row[i] = mat->block.data + i * n_col; } mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->max_col = n_col; mat->flags = 0; return mat; error: isl_blk_free(ctx, mat->block); free(mat); return NULL; } __isl_give isl_mat *isl_mat_extend(__isl_take isl_mat *mat, unsigned n_row, unsigned n_col) { int i; isl_int *old; isl_int **row; if (!mat) return NULL; if (mat->max_col >= n_col && mat->n_row >= n_row) { if (mat->n_col < n_col) mat->n_col = n_col; return mat; } if (mat->max_col < n_col) { struct isl_mat *new_mat; if (n_row < mat->n_row) n_row = mat->n_row; new_mat = isl_mat_alloc(mat->ctx, n_row, n_col); if (!new_mat) goto error; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(new_mat->row[i], mat->row[i], mat->n_col); isl_mat_free(mat); return new_mat; } mat = isl_mat_cow(mat); if (!mat) goto error; old = mat->block.data; mat->block = isl_blk_extend(mat->ctx, mat->block, n_row * mat->max_col); if (isl_blk_is_error(mat->block)) goto error; row = isl_realloc_array(mat->ctx, mat->row, isl_int *, n_row); if (n_row && !row) goto error; mat->row = row; for (i = 0; i < mat->n_row; ++i) mat->row[i] = mat->block.data + (mat->row[i] - old); for (i = mat->n_row; i < n_row; ++i) mat->row[i] = mat->block.data + i * mat->max_col; mat->n_row = n_row; if (mat->n_col < n_col) mat->n_col = n_col; return mat; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc6(isl_ctx *ctx, isl_int **row, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = isl_alloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; for (i = 0; i < n_row; ++i) mat->row[i] = row[first_row+i] + first_col; mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->block = isl_blk_empty(); mat->flags = ISL_MAT_BORROWED; return mat; error: free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc(__isl_keep isl_mat *mat, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { if (!mat) return NULL; return isl_mat_sub_alloc6(mat->ctx, mat->row, first_row, n_row, first_col, n_col); } void isl_mat_sub_copy(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_cpy(dst[i]+dst_col, src[i]+src_col, n_col); } void isl_mat_sub_neg(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_neg(dst[i]+dst_col, src[i]+src_col, n_col); } __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat) { if (!mat) return NULL; mat->ref++; return mat; } __isl_give isl_mat *isl_mat_dup(__isl_keep isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!mat2) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(mat2->row[i], mat->row[i], mat->n_col); return mat2; } __isl_give isl_mat *isl_mat_cow(__isl_take isl_mat *mat) { struct isl_mat *mat2; if (!mat) return NULL; if (mat->ref == 1 && !ISL_F_ISSET(mat, ISL_MAT_BORROWED)) return mat; mat2 = isl_mat_dup(mat); isl_mat_free(mat); return mat2; } __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat) { if (!mat) return NULL; if (--mat->ref > 0) return NULL; if (!ISL_F_ISSET(mat, ISL_MAT_BORROWED)) isl_blk_free(mat->ctx, mat->block); isl_ctx_deref(mat->ctx); free(mat->row); free(mat); return NULL; } isl_size isl_mat_rows(__isl_keep isl_mat *mat) { return mat ? mat->n_row : isl_size_error; } isl_size isl_mat_cols(__isl_keep isl_mat *mat) { return mat ? mat->n_col : isl_size_error; } /* Check that "col" is a valid column position for "mat". */ static isl_stat check_col(__isl_keep isl_mat *mat, int col) { if (!mat) return isl_stat_error; if (col < 0 || col >= mat->n_col) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "column out of range", return isl_stat_error); return isl_stat_ok; } /* Check that "row" is a valid row position for "mat". */ static isl_stat check_row(__isl_keep isl_mat *mat, int row) { if (!mat) return isl_stat_error; if (row < 0 || row >= mat->n_row) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "row out of range", return isl_stat_error); return isl_stat_ok; } /* Check that there are "n" columns starting at position "first" in "mat". */ static isl_stat check_col_range(__isl_keep isl_mat *mat, unsigned first, unsigned n) { if (!mat) return isl_stat_error; if (first + n > mat->n_col || first + n < first) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "column position or range out of bounds", return isl_stat_error); return isl_stat_ok; } /* Check that there are "n" rows starting at position "first" in "mat". */ static isl_stat check_row_range(__isl_keep isl_mat *mat, unsigned first, unsigned n) { if (!mat) return isl_stat_error; if (first + n > mat->n_row || first + n < first) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "row position or range out of bounds", return isl_stat_error); return isl_stat_ok; } int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v) { if (check_row(mat, row) < 0) return -1; if (check_col(mat, col) < 0) return -1; isl_int_set(*v, mat->row[row][col]); return 0; } /* Extract the element at row "row", oolumn "col" of "mat". */ __isl_give isl_val *isl_mat_get_element_val(__isl_keep isl_mat *mat, int row, int col) { isl_ctx *ctx; if (check_row(mat, row) < 0) return NULL; if (check_col(mat, col) < 0) return NULL; ctx = isl_mat_get_ctx(mat); return isl_val_int_from_isl_int(ctx, mat->row[row][col]); } __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v) { mat = isl_mat_cow(mat); if (check_row(mat, row) < 0) return isl_mat_free(mat); if (check_col(mat, col) < 0) return isl_mat_free(mat); isl_int_set(mat->row[row][col], v); return mat; } __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v) { mat = isl_mat_cow(mat); if (check_row(mat, row) < 0) return isl_mat_free(mat); if (check_col(mat, col) < 0) return isl_mat_free(mat); isl_int_set_si(mat->row[row][col], v); return mat; } /* Replace the element at row "row", column "col" of "mat" by "v". */ __isl_give isl_mat *isl_mat_set_element_val(__isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v) { if (!v) return isl_mat_free(mat); if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); mat = isl_mat_set_element(mat, row, col, v->n); isl_val_free(v); return mat; error: isl_val_free(v); return isl_mat_free(mat); } __isl_give isl_mat *isl_mat_diag(isl_ctx *ctx, unsigned n_row, isl_int d) { int i; struct isl_mat *mat; mat = isl_mat_alloc(ctx, n_row, n_row); if (!mat) return NULL; for (i = 0; i < n_row; ++i) { isl_seq_clr(mat->row[i], i); isl_int_set(mat->row[i][i], d); isl_seq_clr(mat->row[i]+i+1, n_row-(i+1)); } return mat; } /* Create an "n_row" by "n_col" matrix with zero elements. */ __isl_give isl_mat *isl_mat_zero(isl_ctx *ctx, unsigned n_row, unsigned n_col) { int i; isl_mat *mat; mat = isl_mat_alloc(ctx, n_row, n_col); if (!mat) return NULL; for (i = 0; i < n_row; ++i) isl_seq_clr(mat->row[i], n_col); return mat; } __isl_give isl_mat *isl_mat_identity(isl_ctx *ctx, unsigned n_row) { if (!ctx) return NULL; return isl_mat_diag(ctx, n_row, ctx->one); } /* Is "mat" a (possibly scaled) identity matrix? */ isl_bool isl_mat_is_scaled_identity(__isl_keep isl_mat *mat) { int i; if (!mat) return isl_bool_error; if (mat->n_row != mat->n_col) return isl_bool_false; for (i = 0; i < mat->n_row; ++i) { if (isl_seq_first_non_zero(mat->row[i], i) != -1) return isl_bool_false; if (isl_int_ne(mat->row[0][0], mat->row[i][i])) return isl_bool_false; if (isl_seq_first_non_zero(mat->row[i] + i + 1, mat->n_col - (i + 1)) != -1) return isl_bool_false; } return isl_bool_true; } __isl_give isl_vec *isl_mat_vec_product(__isl_take isl_mat *mat, __isl_take isl_vec *vec) { int i; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_col == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_row); if (!prod) goto error; for (i = 0; i < prod->size; ++i) isl_seq_inner_product(mat->row[i], vec->el, vec->size, &prod->block.data[i]); isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_mat_vec_inverse_product(__isl_take isl_mat *mat, __isl_take isl_vec *vec) { struct isl_mat *vec_mat; int i; if (!mat || !vec) goto error; vec_mat = isl_mat_alloc(vec->ctx, vec->size, 1); if (!vec_mat) goto error; for (i = 0; i < vec->size; ++i) isl_int_set(vec_mat->row[i][0], vec->el[i]); vec_mat = isl_mat_inverse_product(mat, vec_mat); isl_vec_free(vec); if (!vec_mat) return NULL; vec = isl_vec_alloc(vec_mat->ctx, vec_mat->n_row); if (vec) for (i = 0; i < vec->size; ++i) isl_int_set(vec->el[i], vec_mat->row[i][0]); isl_mat_free(vec_mat); return vec; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_vec_mat_product(__isl_take isl_vec *vec, __isl_take isl_mat *mat) { int i, j; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_row == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_col); if (!prod) goto error; for (i = 0; i < prod->size; ++i) { isl_int_set_si(prod->el[i], 0); for (j = 0; j < vec->size; ++j) isl_int_addmul(prod->el[i], vec->el[j], mat->row[j][i]); } isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } __isl_give isl_mat *isl_mat_aff_direct_sum(__isl_take isl_mat *left, __isl_take isl_mat *right) { int i; struct isl_mat *sum; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == right->n_row, goto error); isl_assert(left->ctx, left->n_row >= 1, goto error); isl_assert(left->ctx, left->n_col >= 1, goto error); isl_assert(left->ctx, right->n_col >= 1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(left->row[0]+1, left->n_col-1) == -1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(right->row[0]+1, right->n_col-1) == -1, goto error); sum = isl_mat_alloc(left->ctx, left->n_row, left->n_col + right->n_col - 1); if (!sum) goto error; isl_int_lcm(sum->row[0][0], left->row[0][0], right->row[0][0]); isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_seq_clr(sum->row[0]+1, sum->n_col-1); for (i = 1; i < sum->n_row; ++i) { isl_int_mul(sum->row[i][0], left->row[0][0], left->row[i][0]); isl_int_addmul(sum->row[i][0], right->row[0][0], right->row[i][0]); isl_seq_scale(sum->row[i]+1, left->row[i]+1, left->row[0][0], left->n_col-1); isl_seq_scale(sum->row[i]+left->n_col, right->row[i]+1, right->row[0][0], right->n_col-1); } isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_mat_free(left); isl_mat_free(right); return sum; error: isl_mat_free(left); isl_mat_free(right); return NULL; } static void exchange(__isl_keep isl_mat *M, __isl_keep isl_mat **U, __isl_keep isl_mat **Q, unsigned row, unsigned i, unsigned j) { int r; for (r = row; r < M->n_row; ++r) isl_int_swap(M->row[r][i], M->row[r][j]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_swap((*U)->row[r][i], (*U)->row[r][j]); } if (Q) isl_mat_swap_rows(*Q, i, j); } static void subtract(__isl_keep isl_mat *M, __isl_keep isl_mat **U, __isl_keep isl_mat **Q, unsigned row, unsigned i, unsigned j, isl_int m) { int r; for (r = row; r < M->n_row; ++r) isl_int_submul(M->row[r][j], m, M->row[r][i]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_submul((*U)->row[r][j], m, (*U)->row[r][i]); } if (Q) { for (r = 0; r < (*Q)->n_col; ++r) isl_int_addmul((*Q)->row[i][r], m, (*Q)->row[j][r]); } } static void oppose(__isl_keep isl_mat *M, __isl_keep isl_mat **U, __isl_keep isl_mat **Q, unsigned row, unsigned col) { int r; for (r = row; r < M->n_row; ++r) isl_int_neg(M->row[r][col], M->row[r][col]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_neg((*U)->row[r][col], (*U)->row[r][col]); } if (Q) isl_seq_neg((*Q)->row[col], (*Q)->row[col], (*Q)->n_col); } /* Given matrix M, compute * * M U = H * M = H Q * * with U and Q unimodular matrices and H a matrix in column echelon form * such that on each echelon row the entries in the non-echelon column * are non-negative (if neg == 0) or non-positive (if neg == 1) * and strictly smaller (in absolute value) than the entries in the echelon * column. * If U or Q are NULL, then these matrices are not computed. */ __isl_give isl_mat *isl_mat_left_hermite(__isl_take isl_mat *M, int neg, __isl_give isl_mat **U, __isl_give isl_mat **Q) { isl_int c; int row, col; if (U) *U = NULL; if (Q) *Q = NULL; if (!M) goto error; if (U) { *U = isl_mat_identity(M->ctx, M->n_col); if (!*U) goto error; } if (Q) { *Q = isl_mat_identity(M->ctx, M->n_col); if (!*Q) goto error; } if (M->n_col == 0) return M; M = isl_mat_cow(M); if (!M) goto error; col = 0; isl_int_init(c); for (row = 0; row < M->n_row; ++row) { int first, i, off; first = isl_seq_abs_min_non_zero(M->row[row]+col, M->n_col-col); if (first == -1) continue; first += col; if (first != col) exchange(M, U, Q, row, first, col); if (isl_int_is_neg(M->row[row][col])) oppose(M, U, Q, row, col); first = col+1; while ((off = isl_seq_first_non_zero(M->row[row]+first, M->n_col-first)) != -1) { first += off; isl_int_fdiv_q(c, M->row[row][first], M->row[row][col]); subtract(M, U, Q, row, col, first, c); if (!isl_int_is_zero(M->row[row][first])) exchange(M, U, Q, row, first, col); else ++first; } for (i = 0; i < col; ++i) { if (isl_int_is_zero(M->row[row][i])) continue; if (neg) isl_int_cdiv_q(c, M->row[row][i], M->row[row][col]); else isl_int_fdiv_q(c, M->row[row][i], M->row[row][col]); if (isl_int_is_zero(c)) continue; subtract(M, U, Q, row, col, i, c); } ++col; } isl_int_clear(c); return M; error: if (Q) { isl_mat_free(*Q); *Q = NULL; } if (U) { isl_mat_free(*U); *U = NULL; } isl_mat_free(M); return NULL; } /* Use row "row" of "mat" to eliminate column "col" from all other rows. */ static __isl_give isl_mat *eliminate(__isl_take isl_mat *mat, int row, int col) { int k; isl_size nr, nc; isl_ctx *ctx; nr = isl_mat_rows(mat); nc = isl_mat_cols(mat); if (nr < 0 || nc < 0) return isl_mat_free(mat); ctx = isl_mat_get_ctx(mat); for (k = 0; k < nr; ++k) { if (k == row) continue; if (isl_int_is_zero(mat->row[k][col])) continue; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_elim(mat->row[k], mat->row[row], col, nc, NULL); isl_seq_normalize(ctx, mat->row[k], nc); } return mat; } /* Perform Gaussian elimination on the rows of "mat", but start * from the final row and the final column. * Any zero rows that result from the elimination are removed. * * In particular, for each column from last to first, * look for the last row with a non-zero coefficient in that column, * move it last (but before other rows moved last in previous steps) and * use it to eliminate the column from the other rows. */ __isl_give isl_mat *isl_mat_reverse_gauss(__isl_take isl_mat *mat) { int k, row, last; isl_size nr, nc; nr = isl_mat_rows(mat); nc = isl_mat_cols(mat); if (nr < 0 || nc < 0) return isl_mat_free(mat); last = nc - 1; for (row = nr - 1; row >= 0; --row) { for (; last >= 0; --last) { for (k = row; k >= 0; --k) if (!isl_int_is_zero(mat->row[k][last])) break; if (k >= 0) break; } if (last < 0) break; if (k != row) mat = isl_mat_swap_rows(mat, k, row); if (!mat) return NULL; if (isl_int_is_neg(mat->row[row][last])) mat = isl_mat_row_neg(mat, row); mat = eliminate(mat, row, last); if (!mat) return NULL; } mat = isl_mat_drop_rows(mat, 0, row + 1); return mat; } /* Negate the lexicographically negative rows of "mat" such that * all rows in the result are lexicographically non-negative. */ __isl_give isl_mat *isl_mat_lexnonneg_rows(__isl_take isl_mat *mat) { int i; isl_size nr, nc; nr = isl_mat_rows(mat); nc = isl_mat_cols(mat); if (nr < 0 || nc < 0) return isl_mat_free(mat); for (i = 0; i < nr; ++i) { int pos; pos = isl_seq_first_non_zero(mat->row[i], nc); if (pos < 0) continue; if (isl_int_is_nonneg(mat->row[i][pos])) continue; mat = isl_mat_row_neg(mat, i); if (!mat) return NULL; } return mat; } /* Given a matrix "H" is column echelon form, what is the first * zero column? That is how many initial columns are non-zero? * Start looking at column "first_col" and only consider * the columns to be of size "n_row". * "H" is assumed to be non-NULL. * * Since "H" is in column echelon form, the first non-zero entry * in a column is always in a later position compared to the previous column. */ static int hermite_first_zero_col(__isl_keep isl_mat *H, int first_col, int n_row) { int row, col; for (col = first_col, row = 0; col < H->n_col; ++col) { for (; row < n_row; ++row) if (!isl_int_is_zero(H->row[row][col])) break; if (row == n_row) return col; } return H->n_col; } /* Return the rank of "mat", or isl_size_error in case of error. */ isl_size isl_mat_rank(__isl_keep isl_mat *mat) { int rank; isl_mat *H; H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL); if (!H) return isl_size_error; rank = hermite_first_zero_col(H, 0, H->n_row); isl_mat_free(H); return rank; } __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat) { int rank; struct isl_mat *U = NULL; struct isl_mat *K; mat = isl_mat_left_hermite(mat, 0, &U, NULL); if (!mat || !U) goto error; rank = hermite_first_zero_col(mat, 0, mat->n_row); K = isl_mat_alloc(U->ctx, U->n_row, U->n_col - rank); if (!K) goto error; isl_mat_sub_copy(K->ctx, K->row, U->row, U->n_row, 0, rank, U->n_col-rank); isl_mat_free(mat); isl_mat_free(U); return K; error: isl_mat_free(mat); isl_mat_free(U); return NULL; } __isl_give isl_mat *isl_mat_lin_to_aff(__isl_take isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, 1+mat->n_row, 1+mat->n_col); if (!mat2) goto error; isl_int_set_si(mat2->row[0][0], 1); isl_seq_clr(mat2->row[0]+1, mat->n_col); for (i = 0; i < mat->n_row; ++i) { isl_int_set_si(mat2->row[1+i][0], 0); isl_seq_cpy(mat2->row[1+i]+1, mat->row[i], mat->n_col); } isl_mat_free(mat); return mat2; error: isl_mat_free(mat); return NULL; } /* Given two matrices M1 and M2, return the block matrix * * [ M1 0 ] * [ 0 M2 ] */ __isl_give isl_mat *isl_mat_diagonal(__isl_take isl_mat *mat1, __isl_take isl_mat *mat2) { int i; isl_mat *mat; if (!mat1 || !mat2) goto error; mat = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row, mat1->n_col + mat2->n_col); if (!mat) goto error; for (i = 0; i < mat1->n_row; ++i) { isl_seq_cpy(mat->row[i], mat1->row[i], mat1->n_col); isl_seq_clr(mat->row[i] + mat1->n_col, mat2->n_col); } for (i = 0; i < mat2->n_row; ++i) { isl_seq_clr(mat->row[mat1->n_row + i], mat1->n_col); isl_seq_cpy(mat->row[mat1->n_row + i] + mat1->n_col, mat2->row[i], mat2->n_col); } isl_mat_free(mat1); isl_mat_free(mat2); return mat; error: isl_mat_free(mat1); isl_mat_free(mat2); return NULL; } static int row_first_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i; for (i = 0; i < n_row; ++i) if (!isl_int_is_zero(row[i][col])) return i; return -1; } static int row_abs_min_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i, min = row_first_non_zero(row, n_row, col); if (min < 0) return -1; for (i = min + 1; i < n_row; ++i) { if (isl_int_is_zero(row[i][col])) continue; if (isl_int_abs_lt(row[i][col], row[min][col])) min = i; } return min; } static isl_stat inv_exchange(__isl_keep isl_mat **left, __isl_keep isl_mat **right, unsigned i, unsigned j) { *left = isl_mat_swap_rows(*left, i, j); *right = isl_mat_swap_rows(*right, i, j); if (!*left || !*right) return isl_stat_error; return isl_stat_ok; } static void inv_oppose( __isl_keep isl_mat *left, __isl_keep isl_mat *right, unsigned row) { isl_seq_neg(left->row[row]+row, left->row[row]+row, left->n_col-row); isl_seq_neg(right->row[row], right->row[row], right->n_col); } static void inv_subtract(__isl_keep isl_mat *left, __isl_keep isl_mat *right, unsigned row, unsigned i, isl_int m) { isl_int_neg(m, m); isl_seq_combine(left->row[i]+row, left->ctx->one, left->row[i]+row, m, left->row[row]+row, left->n_col-row); isl_seq_combine(right->row[i], right->ctx->one, right->row[i], m, right->row[row], right->n_col); } /* Compute inv(left)*right */ __isl_give isl_mat *isl_mat_inverse_product(__isl_take isl_mat *left, __isl_take isl_mat *right) { int row; isl_int a, b; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == left->n_col, goto error); isl_assert(left->ctx, left->n_row == right->n_row, goto error); if (left->n_row == 0) { isl_mat_free(left); return right; } left = isl_mat_cow(left); right = isl_mat_cow(right); if (!left || !right) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < left->n_row; ++row) { int pivot, first, i, off; pivot = row_abs_min_non_zero(left->row+row, left->n_row-row, row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(left->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) if (inv_exchange(&left, &right, pivot, row) < 0) goto error; if (isl_int_is_neg(left->row[row][row])) inv_oppose(left, right, row); first = row+1; while ((off = row_first_non_zero(left->row+first, left->n_row-first, row)) != -1) { first += off; isl_int_fdiv_q(a, left->row[first][row], left->row[row][row]); inv_subtract(left, right, row, first, a); if (!isl_int_is_zero(left->row[first][row])) { if (inv_exchange(&left, &right, row, first) < 0) goto error; } else { ++first; } } for (i = 0; i < row; ++i) { if (isl_int_is_zero(left->row[i][row])) continue; isl_int_gcd(a, left->row[row][row], left->row[i][row]); isl_int_divexact(b, left->row[i][row], a); isl_int_divexact(a, left->row[row][row], a); isl_int_neg(b, b); isl_seq_combine(left->row[i] + i, a, left->row[i] + i, b, left->row[row] + i, left->n_col - i); isl_seq_combine(right->row[i], a, right->row[i], b, right->row[row], right->n_col); } } isl_int_clear(b); isl_int_set(a, left->row[0][0]); for (row = 1; row < left->n_row; ++row) isl_int_lcm(a, a, left->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); isl_assert(left->ctx, 0, goto error); } for (row = 0; row < left->n_row; ++row) { isl_int_divexact(left->row[row][row], a, left->row[row][row]); if (isl_int_is_one(left->row[row][row])) continue; isl_seq_scale(right->row[row], right->row[row], left->row[row][row], right->n_col); } isl_int_clear(a); isl_mat_free(left); return right; error: isl_mat_free(left); isl_mat_free(right); return NULL; } void isl_mat_col_scale(__isl_keep isl_mat *mat, unsigned col, isl_int m) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][col], mat->row[i][col], m); } void isl_mat_col_combine(__isl_keep isl_mat *mat, unsigned dst, isl_int m1, unsigned src1, isl_int m2, unsigned src2) { int i; isl_int tmp; isl_int_init(tmp); for (i = 0; i < mat->n_row; ++i) { isl_int_mul(tmp, m1, mat->row[i][src1]); isl_int_addmul(tmp, m2, mat->row[i][src2]); isl_int_set(mat->row[i][dst], tmp); } isl_int_clear(tmp); } __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat) { struct isl_mat *inv; int row; isl_int a, b; mat = isl_mat_cow(mat); if (!mat) return NULL; inv = isl_mat_identity(mat->ctx, mat->n_col); inv = isl_mat_cow(inv); if (!inv) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < mat->n_row; ++row) { int pivot, first, i, off; pivot = isl_seq_abs_min_non_zero(mat->row[row]+row, mat->n_col-row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(mat->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) exchange(mat, &inv, NULL, row, pivot, row); if (isl_int_is_neg(mat->row[row][row])) oppose(mat, &inv, NULL, row, row); first = row+1; while ((off = isl_seq_first_non_zero(mat->row[row]+first, mat->n_col-first)) != -1) { first += off; isl_int_fdiv_q(a, mat->row[row][first], mat->row[row][row]); subtract(mat, &inv, NULL, row, row, first, a); if (!isl_int_is_zero(mat->row[row][first])) exchange(mat, &inv, NULL, row, row, first); else ++first; } for (i = 0; i < row; ++i) { if (isl_int_is_zero(mat->row[row][i])) continue; isl_int_gcd(a, mat->row[row][row], mat->row[row][i]); isl_int_divexact(b, mat->row[row][i], a); isl_int_divexact(a, mat->row[row][row], a); isl_int_neg(a, a); isl_mat_col_combine(mat, i, a, i, b, row); isl_mat_col_combine(inv, i, a, i, b, row); } } isl_int_clear(b); isl_int_set(a, mat->row[0][0]); for (row = 1; row < mat->n_row; ++row) isl_int_lcm(a, a, mat->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); goto error; } for (row = 0; row < mat->n_row; ++row) { isl_int_divexact(mat->row[row][row], a, mat->row[row][row]); if (isl_int_is_one(mat->row[row][row])) continue; isl_mat_col_scale(inv, row, mat->row[row][row]); } isl_int_clear(a); isl_mat_free(mat); return inv; error: isl_mat_free(mat); isl_mat_free(inv); return NULL; } __isl_give isl_mat *isl_mat_transpose(__isl_take isl_mat *mat) { struct isl_mat *transpose = NULL; int i, j; if (!mat) return NULL; if (mat->n_col == mat->n_row) { mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) for (j = i + 1; j < mat->n_col; ++j) isl_int_swap(mat->row[i][j], mat->row[j][i]); return mat; } transpose = isl_mat_alloc(mat->ctx, mat->n_col, mat->n_row); if (!transpose) goto error; for (i = 0; i < mat->n_row; ++i) for (j = 0; j < mat->n_col; ++j) isl_int_set(transpose->row[j][i], mat->row[i][j]); isl_mat_free(mat); return transpose; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_swap_cols(__isl_take isl_mat *mat, unsigned i, unsigned j) { int r; mat = isl_mat_cow(mat); if (check_col_range(mat, i, 1) < 0 || check_col_range(mat, j, 1) < 0) return isl_mat_free(mat); for (r = 0; r < mat->n_row; ++r) isl_int_swap(mat->row[r][i], mat->row[r][j]); return mat; } __isl_give isl_mat *isl_mat_swap_rows(__isl_take isl_mat *mat, unsigned i, unsigned j) { isl_int *t; if (!mat) return NULL; mat = isl_mat_cow(mat); if (check_row_range(mat, i, 1) < 0 || check_row_range(mat, j, 1) < 0) return isl_mat_free(mat); t = mat->row[i]; mat->row[i] = mat->row[j]; mat->row[j] = t; return mat; } /* Calculate the product of two matrices. * * This function is optimized for operand matrices that contain many zeros and * skips multiplications where we know one of the operands is zero. */ __isl_give isl_mat *isl_mat_product(__isl_take isl_mat *left, __isl_take isl_mat *right) { int i, j, k; struct isl_mat *prod; if (!left || !right) goto error; isl_assert(left->ctx, left->n_col == right->n_row, goto error); prod = isl_mat_alloc(left->ctx, left->n_row, right->n_col); if (!prod) goto error; if (left->n_col == 0) { for (i = 0; i < prod->n_row; ++i) isl_seq_clr(prod->row[i], prod->n_col); isl_mat_free(left); isl_mat_free(right); return prod; } for (i = 0; i < prod->n_row; ++i) { for (j = 0; j < prod->n_col; ++j) isl_int_mul(prod->row[i][j], left->row[i][0], right->row[0][j]); for (k = 1; k < left->n_col; ++k) { if (isl_int_is_zero(left->row[i][k])) continue; for (j = 0; j < prod->n_col; ++j) isl_int_addmul(prod->row[i][j], left->row[i][k], right->row[k][j]); } } isl_mat_free(left); isl_mat_free(right); return prod; error: isl_mat_free(left); isl_mat_free(right); return NULL; } /* Replace the variables x in the rows q by x' given by x = M x', * with M the matrix mat. * * If the number of new variables is greater than the original * number of variables, then the rows q have already been * preextended. If the new number is smaller, then the coefficients * of the divs, which are not changed, need to be shifted down. * The row q may be the equalities, the inequalities or the * div expressions. In the latter case, has_div is true and * we need to take into account the extra denominator column. */ static int preimage(struct isl_ctx *ctx, isl_int **q, unsigned n, unsigned n_div, int has_div, struct isl_mat *mat) { int i; struct isl_mat *t; int e; if (mat->n_col >= mat->n_row) e = 0; else e = mat->n_row - mat->n_col; if (has_div) for (i = 0; i < n; ++i) isl_int_mul(q[i][0], q[i][0], mat->row[0][0]); t = isl_mat_sub_alloc6(mat->ctx, q, 0, n, has_div, mat->n_row); t = isl_mat_product(t, mat); if (!t) return -1; for (i = 0; i < n; ++i) { isl_seq_swp_or_cpy(q[i] + has_div, t->row[i], t->n_col); isl_seq_cpy(q[i] + has_div + t->n_col, q[i] + has_div + t->n_col + e, n_div); isl_seq_clr(q[i] + has_div + t->n_col + n_div, e); } isl_mat_free(t); return 0; } /* Replace the variables x in bset by x' given by x = M x', with * M the matrix mat. * * If there are fewer variables x' then there are x, then we perform * the transformation in place, which means that, in principle, * this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ __isl_give isl_basic_set *isl_basic_set_preimage( __isl_take isl_basic_set *bset, __isl_take isl_mat *mat) { struct isl_ctx *ctx; if (!bset || !mat) goto error; ctx = bset->ctx; bset = isl_basic_set_cow(bset); if (isl_basic_set_check_no_params(bset) < 0) goto error; isl_assert(ctx, 1+bset->dim->n_out == mat->n_row, goto error); isl_assert(ctx, mat->n_col > 0, goto error); if (mat->n_col > mat->n_row) { bset = isl_basic_set_add_dims(bset, isl_dim_set, mat->n_col - mat->n_row); if (!bset) goto error; } else if (mat->n_col < mat->n_row) { bset->dim = isl_space_cow(bset->dim); if (!bset->dim) goto error; bset->dim->n_out -= mat->n_row - mat->n_col; } if (preimage(ctx, bset->eq, bset->n_eq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->ineq, bset->n_ineq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->div, bset->n_div, bset->n_div, 1, mat) < 0) goto error2; ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_CLR(bset, ISL_BASIC_SET_NO_REDUNDANT); ISL_F_CLR(bset, ISL_BASIC_SET_SORTED); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED_DIVS); ISL_F_CLR(bset, ISL_BASIC_SET_ALL_EQUALITIES); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); return bset; error: isl_mat_free(mat); error2: isl_basic_set_free(bset); return NULL; } __isl_give isl_set *isl_set_preimage( __isl_take isl_set *set, __isl_take isl_mat *mat) { int i; set = isl_set_cow(set); if (!set) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_preimage(set->p[i], isl_mat_copy(mat)); if (!set->p[i]) goto error; } if (mat->n_col != mat->n_row) { set->dim = isl_space_cow(set->dim); if (!set->dim) goto error; set->dim->n_out += mat->n_col; set->dim->n_out -= mat->n_row; } isl_mat_free(mat); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); isl_mat_free(mat); return NULL; } /* Replace the variables x starting at "first_col" in the rows "rows" * of some coefficient matrix by x' with x = M x' with M the matrix mat. * That is, replace the corresponding coefficients c by c M. */ isl_stat isl_mat_sub_transform(isl_int **row, unsigned n_row, unsigned first_col, __isl_take isl_mat *mat) { int i; isl_ctx *ctx; isl_mat *t; if (!mat) return isl_stat_error; ctx = isl_mat_get_ctx(mat); t = isl_mat_sub_alloc6(ctx, row, 0, n_row, first_col, mat->n_row); t = isl_mat_product(t, mat); if (!t) return isl_stat_error; for (i = 0; i < n_row; ++i) isl_seq_swp_or_cpy(row[i] + first_col, t->row[i], t->n_col); isl_mat_free(t); return isl_stat_ok; } void isl_mat_print_internal(__isl_keep isl_mat *mat, FILE *out, int indent) { int i, j; if (!mat) { fprintf(out, "%*snull mat\n", indent, ""); return; } if (mat->n_row == 0) fprintf(out, "%*s[]\n", indent, ""); for (i = 0; i < mat->n_row; ++i) { if (!i) fprintf(out, "%*s[[", indent, ""); else fprintf(out, "%*s[", indent+1, ""); for (j = 0; j < mat->n_col; ++j) { if (j) fprintf(out, ","); isl_int_print(out, mat->row[i][j], 0); } if (i == mat->n_row-1) fprintf(out, "]]\n"); else fprintf(out, "]\n"); } } void isl_mat_dump(__isl_keep isl_mat *mat) { isl_mat_print_internal(mat, stderr, 0); } __isl_give isl_mat *isl_mat_drop_cols(__isl_take isl_mat *mat, unsigned col, unsigned n) { int r; if (n == 0) return mat; mat = isl_mat_cow(mat); if (check_col_range(mat, col, n) < 0) return isl_mat_free(mat); if (col != mat->n_col-n) { for (r = 0; r < mat->n_row; ++r) isl_seq_cpy(mat->row[r]+col, mat->row[r]+col+n, mat->n_col - col - n); } mat->n_col -= n; return mat; } __isl_give isl_mat *isl_mat_drop_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { int r; mat = isl_mat_cow(mat); if (check_row_range(mat, row, n) < 0) return isl_mat_free(mat); for (r = row; r+n < mat->n_row; ++r) mat->row[r] = mat->row[r+n]; mat->n_row -= n; return mat; } __isl_give isl_mat *isl_mat_insert_cols(__isl_take isl_mat *mat, unsigned col, unsigned n) { isl_mat *ext; if (check_col_range(mat, col, 0) < 0) return isl_mat_free(mat); if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col + n); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, 0, 0, col); isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, col + n, col, mat->n_col - col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_insert_zero_cols(__isl_take isl_mat *mat, unsigned first, unsigned n) { int i; if (!mat) return NULL; mat = isl_mat_insert_cols(mat, first, n); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_clr(mat->row[i] + first, n); return mat; } __isl_give isl_mat *isl_mat_add_zero_cols(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_cols(mat, mat->n_col, n); } __isl_give isl_mat *isl_mat_insert_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { isl_mat *ext; if (check_row_range(mat, row, 0) < 0) return isl_mat_free(mat); if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row + n, mat->n_col); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, ext->row + row + n, mat->row + row, mat->n_row - row, 0, 0, mat->n_col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_add_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_rows(mat, mat->n_row, n); } __isl_give isl_mat *isl_mat_insert_zero_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { int i; mat = isl_mat_insert_rows(mat, row, n); if (!mat) return NULL; for (i = 0; i < n; ++i) isl_seq_clr(mat->row[row + i], mat->n_col); return mat; } __isl_give isl_mat *isl_mat_add_zero_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_rows(mat, mat->n_row, n); } void isl_mat_col_submul(__isl_keep isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_submul(mat->row[i][dst_col], f, mat->row[i][src_col]); } void isl_mat_col_add(__isl_keep isl_mat *mat, int dst_col, int src_col) { int i; if (!mat) return; for (i = 0; i < mat->n_row; ++i) isl_int_add(mat->row[i][dst_col], mat->row[i][dst_col], mat->row[i][src_col]); } void isl_mat_col_mul(__isl_keep isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][dst_col], f, mat->row[i][src_col]); } /* Add "f" times column "src_col" to column "dst_col" of "mat" and * return the result. */ __isl_give isl_mat *isl_mat_col_addmul(__isl_take isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; if (check_col(mat, dst_col) < 0 || check_col(mat, src_col) < 0) return isl_mat_free(mat); for (i = 0; i < mat->n_row; ++i) { if (isl_int_is_zero(mat->row[i][src_col])) continue; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_int_addmul(mat->row[i][dst_col], f, mat->row[i][src_col]); } return mat; } /* Negate column "col" of "mat" and return the result. */ __isl_give isl_mat *isl_mat_col_neg(__isl_take isl_mat *mat, int col) { int i; if (check_col(mat, col) < 0) return isl_mat_free(mat); for (i = 0; i < mat->n_row; ++i) { if (isl_int_is_zero(mat->row[i][col])) continue; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_int_neg(mat->row[i][col], mat->row[i][col]); } return mat; } /* Negate row "row" of "mat" and return the result. */ __isl_give isl_mat *isl_mat_row_neg(__isl_take isl_mat *mat, int row) { if (check_row(mat, row) < 0) return isl_mat_free(mat); if (isl_seq_first_non_zero(mat->row[row], mat->n_col) == -1) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_neg(mat->row[row], mat->row[row], mat->n_col); return mat; } __isl_give isl_mat *isl_mat_unimodular_complete(__isl_take isl_mat *M, int row) { int r; struct isl_mat *H = NULL, *Q = NULL; if (!M) return NULL; isl_assert(M->ctx, M->n_row == M->n_col, goto error); M->n_row = row; H = isl_mat_left_hermite(isl_mat_copy(M), 0, NULL, &Q); M->n_row = M->n_col; if (!H) goto error; for (r = 0; r < row; ++r) isl_assert(M->ctx, isl_int_is_one(H->row[r][r]), goto error); for (r = row; r < M->n_row; ++r) isl_seq_cpy(M->row[r], Q->row[r], M->n_col); isl_mat_free(H); isl_mat_free(Q); return M; error: isl_mat_free(H); isl_mat_free(Q); isl_mat_free(M); return NULL; } __isl_give isl_mat *isl_mat_concat(__isl_take isl_mat *top, __isl_take isl_mat *bot) { struct isl_mat *mat; if (!top || !bot) goto error; isl_assert(top->ctx, top->n_col == bot->n_col, goto error); if (top->n_row == 0) { isl_mat_free(top); return bot; } if (bot->n_row == 0) { isl_mat_free(bot); return top; } mat = isl_mat_alloc(top->ctx, top->n_row + bot->n_row, top->n_col); if (!mat) goto error; isl_mat_sub_copy(mat->ctx, mat->row, top->row, top->n_row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, mat->row + top->n_row, bot->row, bot->n_row, 0, 0, mat->n_col); isl_mat_free(top); isl_mat_free(bot); return mat; error: isl_mat_free(top); isl_mat_free(bot); return NULL; } isl_bool isl_mat_is_equal(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2) { int i; if (!mat1 || !mat2) return isl_bool_error; if (mat1->n_row != mat2->n_row) return isl_bool_false; if (mat1->n_col != mat2->n_col) return isl_bool_false; for (i = 0; i < mat1->n_row; ++i) if (!isl_seq_eq(mat1->row[i], mat2->row[i], mat1->n_col)) return isl_bool_false; return isl_bool_true; } __isl_give isl_mat *isl_mat_from_row_vec(__isl_take isl_vec *vec) { struct isl_mat *mat; if (!vec) return NULL; mat = isl_mat_alloc(vec->ctx, 1, vec->size); if (!mat) goto error; isl_seq_cpy(mat->row[0], vec->el, vec->size); isl_vec_free(vec); return mat; error: isl_vec_free(vec); return NULL; } /* Return a copy of row "row" of "mat" as an isl_vec. */ __isl_give isl_vec *isl_mat_get_row(__isl_keep isl_mat *mat, unsigned row) { isl_vec *v; if (!mat) return NULL; if (row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", return NULL); v = isl_vec_alloc(isl_mat_get_ctx(mat), mat->n_col); if (!v) return NULL; isl_seq_cpy(v->el, mat->row[row], mat->n_col); return v; } __isl_give isl_mat *isl_mat_vec_concat(__isl_take isl_mat *top, __isl_take isl_vec *bot) { return isl_mat_concat(top, isl_mat_from_row_vec(bot)); } __isl_give isl_mat *isl_mat_move_cols(__isl_take isl_mat *mat, unsigned dst_col, unsigned src_col, unsigned n) { isl_mat *res; if (!mat) return NULL; if (n == 0 || dst_col == src_col) return mat; res = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!res) goto error; if (dst_col < src_col) { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col, src_col - dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col + n, src_col + n, res->n_col - src_col - n); } else { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col, src_col + n, dst_col - src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col + n, res->n_col - dst_col - n); } isl_mat_free(mat); return res; error: isl_mat_free(mat); return NULL; } /* Return the gcd of the elements in row "row" of "mat" in *gcd. * Return isl_stat_ok on success and isl_stat_error on failure. */ isl_stat isl_mat_row_gcd(__isl_keep isl_mat *mat, int row, isl_int *gcd) { if (check_row(mat, row) < 0) return isl_stat_error; isl_seq_gcd(mat->row[row], mat->n_col, gcd); return isl_stat_ok; } void isl_mat_gcd(__isl_keep isl_mat *mat, isl_int *gcd) { int i; isl_int g; isl_int_set_si(*gcd, 0); if (!mat) return; isl_int_init(g); for (i = 0; i < mat->n_row; ++i) { isl_seq_gcd(mat->row[i], mat->n_col, &g); isl_int_gcd(*gcd, *gcd, g); } isl_int_clear(g); } /* Return the result of scaling "mat" by a factor of "m". */ __isl_give isl_mat *isl_mat_scale(__isl_take isl_mat *mat, isl_int m) { int i; if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_scale_down(__isl_take isl_mat *mat, isl_int m) { int i; if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_scale_down(mat->row[i], mat->row[i], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_scale_down_row(__isl_take isl_mat *mat, int row, isl_int m) { if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_scale_down(mat->row[row], mat->row[row], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_normalize(__isl_take isl_mat *mat) { isl_int gcd; if (!mat) return NULL; isl_int_init(gcd); isl_mat_gcd(mat, &gcd); mat = isl_mat_scale_down(mat, gcd); isl_int_clear(gcd); return mat; } __isl_give isl_mat *isl_mat_normalize_row(__isl_take isl_mat *mat, int row) { mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_normalize(mat->ctx, mat->row[row], mat->n_col); return mat; } /* Number of initial non-zero columns. */ int isl_mat_initial_non_zero_cols(__isl_keep isl_mat *mat) { int i; if (!mat) return -1; for (i = 0; i < mat->n_col; ++i) if (row_first_non_zero(mat->row, mat->n_row, i) < 0) break; return i; } /* Return a basis for the space spanned by the rows of "mat". * Any basis will do, so simply perform Gaussian elimination and * remove the empty rows. */ __isl_give isl_mat *isl_mat_row_basis(__isl_take isl_mat *mat) { return isl_mat_reverse_gauss(mat); } /* Return rows that extend a basis of "mat1" to one * that covers both "mat1" and "mat2". * The Hermite normal form of the concatenation of the two matrices is * * [ Q1 ] * [ M1 ] = [ H1 0 0 ] [ Q2 ] * [ M2 ] = [ H2 H3 0 ] [ Q3 ] * * The number of columns in H1 and H3 determine the number of rows * in Q1 and Q2. Q1 is a basis for M1, while Q2 extends this basis * to also cover M2. */ __isl_give isl_mat *isl_mat_row_basis_extension( __isl_take isl_mat *mat1, __isl_take isl_mat *mat2) { isl_size n_row; int r1, r; isl_size n1; isl_mat *H, *Q; n1 = isl_mat_rows(mat1); H = isl_mat_concat(mat1, mat2); H = isl_mat_left_hermite(H, 0, NULL, &Q); if (n1 < 0 || !H || !Q) goto error; r1 = hermite_first_zero_col(H, 0, n1); r = hermite_first_zero_col(H, r1, H->n_row); n_row = isl_mat_rows(Q); if (n_row < 0) goto error; Q = isl_mat_drop_rows(Q, r, n_row - r); Q = isl_mat_drop_rows(Q, 0, r1); isl_mat_free(H); return Q; error: isl_mat_free(H); isl_mat_free(Q); return NULL; } /* Are the rows of "mat1" linearly independent of those of "mat2"? * That is, is there no linear dependence among the combined rows * that is not already present in either "mat1" or "mat2"? * In other words, is the rank of "mat1" and "mat2" combined equal * to the sum of the ranks of "mat1" and "mat2"? */ isl_bool isl_mat_has_linearly_independent_rows(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2) { isl_size r1, r2, r; isl_mat *mat; r1 = isl_mat_rank(mat1); if (r1 < 0) return isl_bool_error; if (r1 == 0) return isl_bool_true; r2 = isl_mat_rank(mat2); if (r2 < 0) return isl_bool_error; if (r2 == 0) return isl_bool_true; mat = isl_mat_concat(isl_mat_copy(mat1), isl_mat_copy(mat2)); r = isl_mat_rank(mat); isl_mat_free(mat); if (r < 0) return isl_bool_error; return isl_bool_ok(r == r1 + r2); }