/* Copyright (C) 1994-1999 The XFree86 Project, Inc. All Rights Reserved. Copyright (C) 2000 Silicon Motion, Inc. All Rights Reserved. Copyright (C) 2008 Mandriva Linux. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT- NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the XFree86 Project and Silicon Motion shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the XFree86 Project and Silicon Motion. */ #ifndef _SMI_501_H #define _SMI_501_H /* * Documentation: * ftp://ftp.siliconmotion.com.tw/databooks/SM501MSOCDatabook_VersionB_1.pdf * * ftp://ftp.siliconmotion.com.tw/databooks/SM502_MMCC_Databook_V1.00.pdf */ #include #define bits(lo, hi) hi + 1 - lo #define DRAM_CTL 0x000010 #define CMD_ADDR 0x000018 /* COMMAND LIST ADDRESS * Read/Write MMIO_base + 0x000018 * Power-on Default N/A * * 0:27 The current address of the Command List. The Command List * updates this address continuously. Bits [2:0] are hardwired * to "0" since every command must be aligned on a 64-bit * boundary. It always points to the instruction being executed. * 28:29 Reserved * 30:30 Idle status. * 0: busy. * 1: idle (default). * 31:31 When this bit is programmed to "1" the Command List will * fetch the first instruction from the Command List specified * by the Command List Address field. It will remain "1" as long * as the Command List is executing code in the Command List. * As soon as you program this bit to "0", the Command List will * stop executing. Programming it back to "1" will continue the * Command List at the address it has left off. */ typedef union _MSOCCmdAddrRec { struct { int32_t address : bits( 0, 27); int32_t u0 : bits(28, 29); int32_t idle : bits(30, 30); int32_t start : bits(31, 31); } f; int32_t value; } MSOCCmdAddrRec, *MSOCCmdAddrPtr; #define CMD_COND 0x00001c #define CMD_RETADDR 0x000020 #define CMD_STATUS 0x000024 /* COMMAND LIST STATUS * Read/Write MMIO_base + 0x000024 * Power-on Default 0b0000.0000.000X.XXXX.XXXX.X000.0000.0XXX * * 0:0 2D Engine Status. * 0: Idle. * 1: Busy. * 1:1 2D Command FIFO Status. * 0: Not empty. * 1: Empty. * 2:2 2D Setup Engine Status. * 0: Idle. * 1: Busy. * 3:10 Reserved * 11:11 Panel Vertical Sync Status. * 0: Not active. * 1: Active. * 12:12 CRT Vertical Sync Status. * 0: Not active. * 1: Active. * 13:13 Panel Graphics Layer Status. * 0: No flip pending. * 1: Flip in progress. * 14:14 Video Layer Status. * 0: No flip pending. * 1: Flip in progress. * 15:15 Current Video Field. * 0: Odd. * 1: Even. * 16:16 CRT Graphics Layer Status. * 0: No flip pending. * 1: Flip in progress. * 17:17 Memory DMA Status. * 0: Idle. * 1: Busy. * 18:18 2D Color Space Conversion Status. * 0: Idle. * 1: Busy. * 19:19 Command FIFO on HIF bus. * 0: Not empty. * 1: Empty. * 20:20 2D Memory FIFO Status. * 0: Not empty. * 1: Empty. * 21:31 Reserved */ typedef union _MSOCCmdStatusRec { struct { int32_t engine : bits( 0, 0); int32_t cmdfifo : bits( 1, 1); int32_t setup : bits( 2, 2); int32_t u0 : bits( 3, 10); int32_t pvsync : bits(11, 11); int32_t cvsync : bits(12, 12); int32_t player : bits(13, 13); int32_t vlayer : bits(14, 14); int32_t vfield : bits(15, 15); int32_t clayer : bits(16, 16); int32_t dma : bits(17, 17); int32_t csc : bits(18, 18); int32_t cmdhif : bits(19, 19); int32_t memfifo : bits(20, 20); int32_t u1 : bits(21, 31); } f; int32_t value; } MSOCCmdStatusRec, *MSOCCmdStatusPtr; /* contents of either power0_clock or power1_clock */ #define CURRENT_CLOCK 0x00003c #define POWER0_CLOCK 0x000044 #define POWER1_CLOCK 0x00004c /* POWER MODE 0 CLOCK * Read/Write MMIO_base + 0x000044 * Power-on Default 0x2A1A0A09 * * POWER MODE 1 CLOCK * Read/Write MMIO_base + 0x00004C * Power-on Default 0x2A1A0A09 * * 0:3 M1XCLK Frequency Divider * 0000 / 1 1000 / 3 * 0001 / 2 1001 / 6 * 0010 / 4 1010 / 12 * 0011 / 8 1011 / 24 * 0100 / 16 1100 / 48 * 0101 / 32 1101 / 96 * 0110 / 64 1110 / 192 * 0111 / 128 1111 / 384 * 4:4 M2XCLK Frequency Input Select. * 0: 288 MHz. * 1: 336 MHz/288 MHz/240 MHz/192 MHz * (see bits 5:4 in the Miscellaneous Timing register * at offset 0x68 on page 2-42). * 8:11 MCLK Frequency Divider. * 0000 / 1 1000 / 3 * 0001 / 2 1001 / 6 * 0010 / 4 1010 / 12 * 0011 / 8 1011 / 24 * 0100 / 16 1100 / 48 * 0101 / 32 1101 / 96 * 0110 / 64 1110 / 192 * 0111 / 128 1111 / 384 * 12:12 MCLK Frequency Input Select. * 0: 288 MHz. * 1: 336 MHz/288 MHz/240 MHz/192 MHz * (see bits 5:4 in the Miscellaneous Timing register * at offset 0x68 on page 2-42). * 16:19 V2XCLK DIVIDER * 0000 / 1 1000 / 3 * 0001 / 2 1001 / 6 * 0010 / 4 1010 / 12 * 0011 / 8 1011 / 24 * 0100 / 16 1100 / 48 * 0101 / 32 1101 / 96 * 0110 / 64 1110 / 192 * 0111 / 128 1111 / 384 * 20:20 V2XCLK SELECT (Crt clock) * 0: 288 MHz * 1: 336 MHz/288 MHz/240 MHz/192 MHz * (see bits 5:4 in the Miscellaneous Timing register * at offset 0x68 on page 2-42). * 21:21 Disable 2X V2XCLK. * 0: Normal. * 1: No need to feed 2X VCLK. * 24:28 P2XCLK DIVIDER * 00000 / 1 01000 / 3 10000 / 5 * 00001 / 2 01001 / 6 10001 / 10 * 00010 / 4 01010 / 12 10010 / 20 * 00011 / 8 01011 / 24 10011 / 40 * 00100 / 16 01100 / 48 10100 / 80 * 00101 / 32 01101 / 96 10101 / 160 * 00110 / 64 01110 / 192 10110 / 320 * 00111 / 128 01111 / 384 10111 / 640 * 29:29 P2XCLK SELECT (Panel clock) * 00: 288 MHz * 01: 336 MHz/288 MHz/240 MHz/192 MHz * (see bits 5:4 in the Miscellaneous Timing register * at offset 0x68 on page 2-42). * 30:30 PLL SELECT * 0: Use standard p2_xxx clock * 1: Use PLL_CONTROL (MMIO 0x074) for clock setting. * Available only for the panel. * 31:31 Disable 2X P2XCLK. * 0: Normal. * 1: 1X clock for P2CLK. */ typedef union _MSOCClockRec { struct { /* Clock source for the local SDRAM controller. */ int32_t m1_shift : bits( 0, 2); int32_t m1_divider : bits( 3, 3); int32_t m1_select : bits( 4, 4); int32_t u0 : bits( 5, 7); /* Main clock source for all functional blocks, * such as the 2D engine, GPIO, Video Engine, DMA Engine. */ int32_t m_shift : bits( 8, 10); int32_t m_divider : bits(11, 11); int32_t m_select : bits(12, 12); int32_t u1 : bits(13, 15); /* 2X clock source for the CRT interface timing. * The actual rate at which the pixels are shifted * out is V2XCLK divided by two. */ int32_t v2_shift : bits(16, 18); int32_t v2_divider : bits(19, 19); int32_t v2_select : bits(20, 20); int32_t v2_1xclck : bits(21, 21); int32_t u2 : bits(22, 23); /* 2X clock source for the Panel interface timing. * The actual rate at which the pixels are shifted * out is P2XCLK divided by two. */ int32_t p2_shift : bits(24, 26); int32_t p2_divider : bits(27, 28); int32_t p2_select : bits(29, 29); /* If pll_select is set, an alternate clock selection, available * only in the 502 (using PLL_CTL, MMIO 0x074), will be used, * and p2_* values will be ignored. */ int32_t pll_select : bits(30, 30); /* If p2_1xclck is set, it means use 1x clock, otherwise * 2x clocks must be specified in p2_{shift,divider,select}. */ int32_t p2_1xclck : bits(31, 31); } f; int32_t value; } MSOCClockRec, *MSOCClockPtr; typedef struct _MSOCRegRec { #define SYSTEM_CTL 0x000000 /* SYSTEM CONTROL * Read/Write MMIO_base + 0x000000 * Power-on Default 0b0000.0000.XX0X.X0XX.0000.0000.0000.0000 * * 7:7 PCI Retry * 0: Enable * 1: Disable * 15:15 PCI Burst Read Enable. * The BE bit must be enabled as well for this bit to take effect. * (BE bit is bit 29, bit 15 is BrE) * 0: Disable. * 1: Enable. * 29:29 PCI Burst Enable. * 0: Disable. * 1: Enable. * 30:31 Vertical Sync Horizontal Sync * 00 Pulsing Pulsing * 01 Pulsing Not pulsing * 10 Not pulsing Pulsing * 11 Not pulsing Not pulsing */ union { struct { int32_t u0 : bits( 0, 6); int32_t retry : bits( 7, 7); int32_t u1 : bits( 8, 14); int32_t burst_read : bits(15, 15); int32_t u2 : bits(16, 28); int32_t burst : bits(29, 29); int32_t dpmsh : bits(30, 30); int32_t dpmsv : bits(31, 31); } f; int32_t value; } system_ctl; #define MISC_CTL 0x000004 /* Miscellaneous Control * Read/Write MMIO_base + 0x000004 * Power-on Default 0b0000.0000.0000.00X0.0001.0000.XXX0.0XXX * * 12:12 DAC Power Control. * 0: Enable. * 1: Disable. * 24:24 Crystal Frequency Select. * 0: 24MHz. * 1: 12MHz */ union { struct { int32_t u0 : bits( 0, 11); int32_t dac : bits(12, 12); int32_t u1 : bits(13, 23); int32_t frequency : bits(24, 24); } f; int32_t value; } misc_ctl; #define POWER0_GATE 0x000040 #define POWER1_GATE 0x000048 /* POWER MODE 0 GATE * Read/Write MMIO_base + 0x000040 * Power-on Default 0x00021807 * * POWER MODE 1 GATE * Read/Write MMIO_base + 0x000048 * Power-on Default 0x00021807 * * 3:3 2D Engine Clock Control. * 0: Disable. * 1: Enable. * 4:4 Color Space Conversion Clock Control. * 0: Disable. * 1: Enable. * 5:5 ZV-Port Clock Control. * 0: Disable. * 1: Enable. * 6:6 GPIO, PWM, and I2C Clock Control. * 0: Disable. * 1: Enable. */ union { struct { int32_t u0 : bits(0, 2); int32_t engine : bits(3, 3); int32_t csc : bits(4, 4); int32_t zv : bits(5, 5); int32_t gpio : bits(6, 6); } f; int32_t value; } gate; int32_t current_gate; MSOCClockRec clock; int32_t current_clock; #define SLEEP_GATE 0x000050 /* SLEEP MODE GATE * Read/Write MMIO_base + 0x000050 * Power-on Default 0x00018000 * * 13:14 PLL Recovery. * 00: 1ms (32 counts). * 01: 2ms (64 counts). * 10: 3ms (96 counts). * 11: 4ms (128 counts). * 19:22 PLL Recovery Clock Divider. * 0000 / 4096 0100 / 256 1000 / 16 * 0001 / 2048 0101 / 128 1001 / 8 * 0010 / 1024 0110 / 64 1010 / 4 * 0011 / 512 0111 / 32 1011 / 2 * Internally, the PLL recovery time counters are based on a 32 us * clock. So you have to program the D field (19:22) to make the * host clock come as close to 33 us as possible. */ union { struct { int32_t u0 : bits( 0, 12); int32_t recovery : bits(13, 14); int32_t u1 : bits(15, 18); int32_t divider : bits(19, 22); } f; int32_t value; } sleep_gate; #define POWER_CTL 0x000054 /* POWER MODE CONTROL * Read/Write MMIO_base + 0x000054 * Power-on Default 0x00000000 * * 1:0 Power Mode Select. * 00: Power Mode 0. * 01: Power Mode 1. * 10: Sleep Mode. * 2:2 Current Sleep Status. * 0: Not in sleep mode. * 1: In sleep mode. * When the SM501 is transitioning back from sleep mode to a normal * power mode (Modes 0 or 1), the software needs to poll this bit * until it becomes "0" before writing any other commands to the chip. */ union { struct { int32_t mode : bits(0, 1); int32_t status : bits(2, 2); } f; int32_t value; } power_ctl; #define DEVICE_ID 0x000060 /* DEVICE ID * Read/Write MMIO_base + 0x000060 * Power-on Default 0x050100A0 * * 0:7 Revision Identification: (0xC0 for the 502). * 16:31 DeviceId Device Identification: 0x0501. */ union { struct { int32_t revision : bits( 0, 7); int32_t u0 : bits( 8, 15); int32_t ident : bits(16, 31); } f; int32_t value; } device_id; #define TIMING_CTL 0x000068 /* Miscellaneous Control * Read/Write MMIO_base + 0x000068 * Power-on Default 0x00000000 * * 4:5 PLL Input frequency * 00: the output of PLL2 = 48 MHz x 7 = 336 MHz, power on default * 01: the output of PLL2 = 48 MHz x 6 = 288 MHz * 10: the output of PLL2 = 48 MHz x 5 = 240 MHz * 11: the output of PLL2 = 48 MHz x 4 = 192 MHz */ union { struct { int32_t u0 : bits( 0, 3); int32_t pll : bits( 4, 5); } f; int32_t value; } timing_ctl; #define PLL_CTL 0x000074 /* Programmable PLL Control * Read/Write MMIO_base + 0x000074 * Power-on Default 0x000000FF * 0:7 PLL M Value * 8:14 PLL N Value * 15:15 PLL Output Divided by 2. * 0: Disable. * 1: Enable. * 16:16 PLL Clock Select. * 0: Crystal input. * 1: Test clock input. * 17:17 PLL Power Down. * 0: Power down. * 1: Power on. * * The formula is: * Requested Pixel Clock = Input Frequency * M / N * Input Frequency is the input crystal frequency value (24 MHz in * the SMI VGX Demo Board). N must be a value between 2 and 24. * M can be any (8 bits) value, and a loop testing all possible N * values should be the best approach to calculate it's value. */ union { struct { int32_t m : bits( 0, 7); int32_t n : bits( 8, 14); int32_t divider : bits(15, 15); int32_t select : bits(16, 16); int32_t power : bits(17, 17); } f; int32_t value; } pll_ctl; #define PANEL_DISPLAY_CTL 0x080000 /* PANEL DISPLAY CONTROL * Read MMIO_base + 0x080000 * Power-on Default 0x00010000 * * 1:0 Format Panel Graphics Plane Format. * 00: 8-bit indexed mode. * 01: 16-bit RGB 5:6:5 mode. * 10: 32-bit RGB 8:8:8 mode. * 2:2 Panel Graphics Plane Enable. * 0: Disable panel graphics plane. * 1: Enable panel graphics plane. * 3:3 Enable Gamma Control. Gamma control can only * be enabled in RGB 5:6:5 and RGB 8:8:8 modes. * 0: Disable. * 1: Enable. * 8:8 Enable Panel Timing. * 0: Disable panel timing. * 1: Enable panel timing. * 12:12 Horizontal Sync Pulse Phase Select. * 0: Horizontal sync pulse active high. * 1: Horizontal sync pulse active low. * 13:13 Vertical Sync Pulse Phase Select. * 0: Vertical sync pulse active high. * 1: Vertical sync pulse active low. * 24:24 Control FPVDDEN Output Pin. * 0: Driven low. * 1: Driven high. * 25:25 Panel Control Signals and Data Lines Enable. * 0: Disable panel control signals and data lines. * 1: Enable panel control signals and data lines. * 26:26 Control VBIASEN Output Pin. * 0: Driven low. * 1: Driven high. * 27:27 Control FPEN Output Pin. * 0: Driven low. * 1: Driven high. */ union { struct { int32_t format : bits( 0, 1); int32_t enable : bits( 2, 2); int32_t gamma : bits( 3, 3); int32_t u0 : bits( 4, 7); int32_t timing : bits( 8, 8); int32_t u1 : bits( 9, 11); int32_t hsync : bits(12, 12); int32_t vsync : bits(13, 13); int32_t u2 : bits(14, 23); int32_t vdd : bits(24, 24); int32_t signal : bits(25, 25); int32_t bias : bits(26, 26); int32_t fp : bits(27, 27); } f; int32_t value; } panel_display_ctl; #define PANEL_FB_ADDRESS 0x08000c /* PANEL FB ADDRESS * Read/Write MMIO_base + 0x08000C * Power-on Default Undefined * * 4:25 Address Memory address of frame buffer for the * panel graphics plane with 128-bit alignment. * 26:26 Chip Select for External Memory. * 0: CS0 of external memory. * 1: CS1 of external memory. * 27:27 Ext Memory Selection. * 0: Local memory. * 1: External memory. * 31:31 Status Bit. * 0: No flip pending. * 1: Flip pending. */ union { struct { int32_t u0 : bits( 0, 3); int32_t address : bits( 4, 25); int32_t mextern : bits(26, 26); int32_t mselect : bits(27, 27); int32_t u1 : bits(28, 30); int32_t pending : bits(31, 31); } f; int32_t value; } panel_fb_address; #define PANEL_FB_WIDTH 0x080010 /* PANEL FB WIDTH * Read/Write MMIO_base + 0x080010 * Power-on Default Undefined * * 4:13 Number of 128-bit aligned bytes per line of the FB * graphics plane * 20:29 Number of bytes per line of the panel graphics window * specified in 128-bit aligned bytes. */ union { struct { int32_t u0 : bits( 0, 3); int32_t offset : bits( 4, 13); int32_t u1 : bits(14, 19); int32_t width : bits(20, 29); } f; int32_t value; } panel_fb_width; #define PANEL_WWIDTH 0x080014 /* PANEL WINDOW WIDTH * Read/Write MMIO_base + 0x080014 * Power-on Default Undefined * * 0:11 Starting x-coordinate of panel graphics window * specified in pixels. * 16:27 Width of FB graphics window specified in pixels. */ union { struct { int32_t x : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t width : bits(16, 27); } f; int32_t value; } panel_wwidth; #define PANEL_WHEIGHT 0x080018 /* PANEL WINDOW HEIGHT * Read/Write MMIO_base + 0x080018 * Power-on Default Undefined * * 0:11 Starting y-coordinate of panel graphics window * specified in pixels. * 16:27 Height of FB graphics window specified in pixels. */ union { struct { int32_t y : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t height : bits(16, 27); } f; int32_t value; } panel_wheight; #define PANEL_PLANE_TL 0x08001c /* PANEL PLANE TL * Read/Write MMIO_base + 0x08001c * Power-on Default Undefined * * 0:10 Left location of the panel graphics plane specified in pixels. * 16:26 Top location of the panel graphics plane specified in lines. */ union { struct { int32_t left : bits( 0, 10); int32_t u0 : bits(11, 15); int32_t top : bits(16, 26); } f; int32_t value; } panel_plane_tl; #define PANEL_PLANE_BR 0x080020 /* PANEL PLANE BR * Read/Write MMIO_base + 0x080020 * Power-on Default Undefined * * 0:10 Right location of the panel graphics plane specified in pixels. * 16:26 Bottom location of the panel graphics plane specified in lines. */ union { struct { int32_t right : bits( 0, 10); int32_t u0 : bits(11, 15); int32_t bottom : bits(16, 26); } f; int32_t value; } panel_plane_br; #define PANEL_HTOTAL 0x080024 /* PANEL HORIZONTAL TOTAL * Read/Write MMIO_base + 0x080024 * Power-on Default Undefined * * 0:11 Panel horizontal display end specified as number of pixels - 1. * 16:27 Panel horizontal total specified as number of pixels - 1. */ union { struct { int32_t end : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t total : bits(16, 27); } f; int32_t value; } panel_htotal; #define PANEL_HSYNC 0x080028 /* PANEL HORIZONTAL SYNC * Read/Write MMIO_base + 0x080028 * Power-on Default Undefined * * 0:11 HS Panel horizontal sync start specified as pixel number - 1. * 16:23 HSW Panel horizontal sync width specified in pixels. */ union { struct { int32_t start : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t width : bits(16, 23); } f; int32_t value; } panel_hsync; #define PANEL_VTOTAL 0x08002c /* PANEL VERTICAL TOTAL * Read/Write MMIO_base + 0x08002C * Power-on Default Undefined * * 0:11 VDE Panel vertical display end specified as number of pixels - 1. * 16:27 VT Panel vertical total specified as number of pixels - 1. */ union { struct { int32_t end : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t total : bits(16, 27); } f; int32_t value; } panel_vtotal; #define PANEL_VSYNC 0x080030 /* PANEL VERTICAL SYNC * Read/Write MMIO_base + 0x080030 * Power-on Default Undefined * * 0:11 VS Panel vertical sync start specified as pixel number - 1. * 16:23 VSH Panel vertical sync height specified in pixels. */ union { struct { int32_t start : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t height : bits(16, 23); } f; int32_t value; } panel_vsync; #define ALPHA_DISPLAY_CTL 0x080100 /* ALPHA DISPLAY CONTROL * Read MMIO base + 0x080100 * Power-on Default 0x00010000 * * 0:1 Alpha Plane Format * 01: 16-bit RGB 5:6:5 mode. * 10: 8-bit indexed a|4:4 mode. * 11: 16-bit aRGB 4:4:4:4 mode. * 2:2 Alpha Plane Enable * 0: Disable Alpha Plane * 1: Enable Alpha Plane * 3:3 Enable Chroma Key. * 0: Disable chroma key. * 1: Enable chroma key. * 24:27 Alpha Plane Alpha Value. * This field is only valid when bit 28 is set. * 28:28 Alpha Select. * 0: 0: Use per-pixel alpha values. * 1: Use alpha value specified in Alpha. */ union { struct { int32_t format : bits( 0, 1); int32_t enable : bits( 2, 2); int32_t chromakey : bits( 3, 3); int32_t u0 : bits( 4, 23); int32_t alpha : bits(24, 27); int32_t select : bits(28, 28); } f; int32_t value; } alpha_display_ctl; #define ALPHA_FB_ADDRESS 0x080104 /* ALPHA FB ADDRESS * Read/Write MMIO_base + 0x080104 * Power-on Default Undefined * * 4:25 Address Memory address of frame buffer for the * CRT graphics plane with 128-bit alignment. * 26:26 Chip Select for External Memory. * 0: CS0 of external memory. * 1: CS1 of external memory. * 27:27 Ext Memory Selection. * 0: Local memory. * 1: External memory. * 31:31 Status Bit. * 0: No flip pending. * 1: Flip pending. */ union { struct { int32_t u0 : bits( 0, 3); int32_t address : bits( 4, 25); int32_t mextern : bits(26, 26); int32_t mselect : bits(27, 27); int32_t u1 : bits(28, 30); int32_t pending : bits(31, 31); } f; int32_t value; } alpha_fb_address; #define ALPHA_FB_WIDTH 0x080108 /* ALPHA FB WIDTH * Read/Write MMIO_base + 0x080108 * Power-on Default Undefined * * 4:13 Number of 128-bit aligned bytes per line of the FB * graphics plane * 20:29 Number of bytes per line of the alpha window * specified in 128-bit aligned bytes. */ union { struct { int32_t u0 : bits( 0, 3); int32_t offset : bits( 4, 13); int32_t u1 : bits(14, 19); int32_t width : bits(20, 29); } f; int32_t value; } alpha_fb_width; #define ALPHA_PLANE_TL 0x08010c /* ALPHA PLANE TL * Read/Write MMIO_base + 0x08010c * Power-on Default Undefined * * 0:10 Left location of the panel graphics plane specified in pixels. * 16:26 Top location of the panel graphics plane specified in lines. */ union { struct { int32_t left : bits( 0, 10); int32_t u0 : bits(11, 15); int32_t top : bits(16, 26); } f; int32_t value; } alpha_plane_tl; #define ALPHA_PLANE_BR 0x080110 /* ALPHA PLANE BR * Read/Write MMIO_base + 0x080110 * Power-on Default Undefined * * 0:10 Right location of the panel graphics plane specified in pixels. * 16:26 Bottom location of the panel graphics plane specified in lines. */ union { struct { int32_t right : bits( 0, 10); int32_t u0 : bits(11, 15); int32_t bottom : bits(16, 26); } f; int32_t value; } alpha_plane_br; #define ALPHA_CHROMA_KEY 0x080114 /* ALPHA PLANE BR * Read/Write MMIO_base + 0x080114 * Power-on Default Undefined * * 0:15 Chroma Key Value for Alpha Plane. * 16:31 Chroma Key Mask for Alpha Plane. * 0: Compare respective bit. * 1: Do not compare respective bit. * Note that the 0 and 1 values are mean't for every one of * the 16 5:6:5 bits */ union { struct { int32_t value : bits( 0, 15); int32_t mask : bits(16, 31); } f; int32_t value; } alpha_chroma_key; /* 0x080118 to 0x80134 16 4 bit indexed rgb 5:6:5 table */ #define ALPHA_COLOR_LOOKUP 0x080118 #define CRT_DISPLAY_CTL 0x080200 /* CRT DISPLAY CONTROL * Read MMIO_base + 0x080200 * Power-on Default 0x00010000 * * 0:1 Format Panel Graphics Plane Format. * 00: 8-bit indexed mode. * 01: 16-bit RGB 5:6:5 mode. * 10: 32-bit RGB 8:8:8 mode. * 2:2 CRT Graphics Plane Enable. * 0: Disable CRT Graphics plane. * 1: Enable CRT Graphics plane. * 3:3 Enable Gamma Control. Gamma control can be enabled * only in RGB 5:6:5 and RGB 8:8:8 modes. * 0: Disable gamma control. * 1: Enable gamma control. * 4:7 Starting Pixel Number for Smooth Pixel Panning. * 8:8 Enable CRT Timing. * 0: Disable CRT timing. * 1: Enable CRT timing. * 9:9: CRT Data Select. * 0: CRT will display panel data. * 1: CRT will display CRT data. * 10:10 CRT Data Blanking. * 0: CRT will show pixels. * 1: CRT will be blank. * 11:11 Vertical Sync. This bit is read only. * 12:12 Horizontal Sync Pulse Phase Select. * 0: Horizontal sync pulse active high. * 1: Horizontal sync pulse active low. * 13:13 Vertical Sync Pulse Phase Select. * 0: Vertical sync pulse active high. * 1: Vertical sync pulse active low. */ union { struct { int32_t format : bits( 0, 1); int32_t enable : bits( 2, 2); int32_t gamma : bits( 3, 3); int32_t pixel : bits( 4, 7); int32_t timing : bits( 8, 8); int32_t select : bits( 9, 9); int32_t blank : bits(10, 10); int32_t sync : bits(11, 11); int32_t hsync : bits(12, 12); int32_t vsync : bits(13, 13); } f; int32_t value; } crt_display_ctl; #define CRT_FB_ADDRESS 0x080204 /* CRT FB ADDRESS * Read/Write MMIO_base + 0x080204 * Power-on Default Undefined * * 4:25 Address Memory address of frame buffer for the * CRT graphics plane with 128-bit alignment. * 26:26 Chip Select for External Memory. * 0: CS0 of external memory. * 1: CS1 of external memory. * 27:27 Ext Memory Selection. * 0: Local memory. * 1: External memory. * 31:31 Status Bit. * 0: No flip pending. * 1: Flip pending. */ union { struct { int32_t u0 : bits( 0, 3); int32_t address : bits( 4, 25); int32_t mextern : bits(26, 26); int32_t mselect : bits(27, 27); int32_t u1 : bits(28, 30); int32_t pending : bits(31, 31); } f; int32_t value; } crt_fb_address; #define CRT_FB_WIDTH 0x080208 /* CRT FB WIDTH * Read/Write MMIO_base + 0x080208 * Power-on Default Undefined * * 4:13 Number of 128-bit aligned bytes per line of the FB * graphics plane * 20:29 Number of bytes per line of the crt graphics window * specified in 128-bit aligned bytes. */ union { struct { int32_t u0 : bits( 0, 3); int32_t offset : bits( 4, 13); int32_t u1 : bits(14, 19); int32_t width : bits(20, 29); } f; int32_t value; } crt_fb_width; #define CRT_HTOTAL 0x08020c /* CRT HORIZONTAL TOTAL * Read/Write MMIO_base + 0x08020C * Power-on Default Undefined * * 0:11 Crt horizontal display end specified as number of pixels - 1. * 16:27 Crt horizontal total specified as number of pixels - 1. */ union { struct { int32_t end : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t total : bits(16, 27); } f; int32_t value; } crt_htotal; #define CRT_HSYNC 0x080210 /* CRT HORIZONTAL SYNC * Read/Write MMIO_base + 0x080210 * Power-on Default Undefined * * 0:11 Crt horizontal sync start specified as pixel number - 1. * 16:23 Crt horizontal sync width specified in pixels. */ union { struct { int32_t start : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t width : bits(16, 23); } f; int32_t value; } crt_hsync; #define CRT_VTOTAL 0x080214 /* CRT VERTICAL TOTAL * Read/Write MMIO_base + 0x080214 * Power-on Default Undefined * * 0:10 Crt vertical display end specified as number of pixels - 1. * 16:26 Crt vertical total specified as number of pixels - 1. */ union { struct { int32_t end : bits( 0, 10); int32_t u0 : bits(11, 15); int32_t total : bits(16, 26); } f; int32_t value; } crt_vtotal; #define CRT_VSYNC 0x080218 /* CRT VERTICAL SYNC * Read/Write MMIO_base + 0x080218 * Power-on Default Undefined * * 0:11 Crt vertical sync start specified as pixel number - 1. * 16:21 Crt vertical sync height specified in pixels. */ union { struct { int32_t start : bits( 0, 11); int32_t u0 : bits(12, 15); int32_t height : bits(16, 21); } f; int32_t value; } crt_vsync; #define CRT_DETECT 0x080224 /* CRT MONITOR DETECT * Read/Write MMIO_base + 0x080224 * Power-on Default Undefined * * 0:23 Monitor Detect Data in RGB 8:8:8. This field is read-only. * 24:24 Monitor Detect Enable. * 0: Disable. * 1: Enable. * 25:25 Monitor Detect Read Back. * 1: All R, G, and B voltages are greater than 0.325 V. * 0: All R, G, and B voltages are less than or equal to 0.325 V. */ union { struct { int32_t data : bits( 0, 23); int32_t enable : bits(24, 24); int32_t voltage : bits(25, 25); } f; int32_t value; } crt_detect; #define PANEL_PALETTE 0x080400 #define CRT_PALETTE 0x080c00 #define ACCEL_SRC 0x100000 int32_t accel_src; #define ACCEL_DST 0x100004 int32_t accel_dst; #define ACCEL_DIM 0x100008 int32_t accel_dim; #define ACCEL_CTL 0x10000c int32_t accel_ctl; #define ACCEL_PITCH 0x100010 int32_t accel_pitch; #define ACCEL_FMT 0x10001c int32_t accel_fmt; #define ACCEL_CLIP_TL 0x10002c int32_t accel_clip_tl; #define ACCEL_CLIP_BR 0x100030 int32_t accel_clip_br; #define ACCEL_PAT_LO 0x100034 int32_t accel_pat_lo; #define ACCEL_PAT_HI 0x100038 int32_t accel_pat_hi; #define ACCEL_WWIDTH 0x10003c int32_t accel_wwidth; #define ACCEL_SRC_BASE 0x100040 int32_t accel_src_base; #define ACCEL_DST_BASE 0x100044 int32_t accel_dst_base; } MSOCRegRec, *MSOCRegPtr; typedef enum smi_cli_cmd_code { /* Load Memory 0000b * * 0:0 When this bit is programmed to "0", the 32-bit DWord * data (bits [63:32]) is written to the Memory Address. * When this bit is programmed to "1", the 16-bit Word * data (bits [47:32]) is written to the Memory Address. * 1:27 The Memory Address to write data to. Bits [3:0] are * hardwired to "0" since all Memory Addresses should be * 128-bit aligned. * 28:31 0000b * 32:61 The data to be loaded in the memory address specified * by Memory Address. The data format is either 32-bit * DWords or 16-bit Words. * 62:63 Bits [63:62] are the byte-enable signals for the Word * data. They are active high. */ smi_cli_load_mem, /* Load Register 0001b * * 0:27 The register address (in the space 0x00000000 - * 0x001FFFFF) to write data to. Bits [0:1] are * hardwired to "0"since all register addresses should * be 32-bit aligned. * 28:31 001b * 32:63 The data to be loaded in the register specified by * Register Address. */ smi_cli_load_reg, /* Load Memory Immediate 0010b * * 0:27 The starting memory address to write data to. * Bits [1:0] are hardwired to "0". * 28:31 0010b * 32:63 The number of DWORDs to load into the memory. * * The data that must be loaded into the memory directly follows * this command. Make sure the correct number of DWORDs (DWORD Count) * is provided, otherwise unpredicted results will happen. Also, if * an odd number of DWORDs is specified, the last DWORD should be * padded with a dummy DWORD to align the next command to 64-bit again. */ smi_cli_load_mem_imm, /* Load Register Immediate 0011b * * 0:27 The register address (in the space 0x00000000 - * 0x001FFFFF) to write data to. Bits [0:1] are * hardwired to "0"since all register addresses should * be 32-bit aligned. * 28:31 0011b * 32:63 The number of DWORDs to load into the registers. * * The data that must be loaded into the registers directly follows * this command. Make sure the correct number of DWORDs (DWORD Count) * is provided, otherwise unpredicted results will happen. Also, if * an odd number of DWORDs is specified, the last DWORD should be * padded with a dummy DWORD to align the next command to 64-bit again. */ smi_cli_load_reg_imm, /* Load Memory Indirect 0100b * * 0:27 The starting memory address to write data to. * Bits [1:0] are hardwired to "0". * 28:31 0100b * 32:63 The number of DWORDs to copy into the memory. * 64:91 The starting memory address to read data from. * Bits [65:64] are hardwired to "0". * 92:127 Unused. * * This command copies data from the memory location specified * by Source Memory Address into the memory location specified by * Memory Address. The DWORD Count specifies the number of DWORDs * to copy. This command is most useful to copy texture, bitmap, * or vertex data to off-screen memory for caching purposes. */ smi_cli_load_mem_ind, /* Load Register Indirect 0101b * * 0:27 The register address (in the space 0x00000000 - * 0x001FFFFF) to write data to. Bits [0:1] are * hardwired to "0"since all register addresses should * be 32-bit aligned. * 28:31 0101b * 32:63 The number of DWORDs to copy into the memory. * 64:91 The starting memory address to read data from. * Bits [65:64] are hardwired to "0". * 92:127 Unused. * * This command copies data from the memory location specified * by Source Memory Address into the register bank location specified * by Register Address. The DWORD Count specifies the number of DWORDs * to copy. This command is most useful to copy texture, bitmap, * or vertex data to the engine FIFOs for processing. */ smi_cli_load_reg_ind, /* Status Test 0110b * * 0:0 2D Drawing Engine * (0 = idle, 1 = busy). * 1:1 2D and Color Space Conversion command FIFO * (0 = not empty, 1 = empty). * 2:2 2D Setup Engine (0 = idle, 1 = busy). * 3:10 Unused. * 11:11 Vertical Sync for Panel pipe * (0 = not active, 1 = active). * 12:12 Vertical Sync for CRT pipe * (0 = not active, 1 = active). * 13:13 Panel Graphics Layer status bit. * 14:14 Video Layer status bit. * 15:15 Current Video Layer field for BOB * (0 = odd, 1 = even). * 16:16 CRT Graphics Layer status bit. * 17:17 Memory DMA busy bit. * 18:18 Color Space Conversion busy bit. * 19:19 Command FIFO on HIF bus * (0 = not empty, 1 = empty). * 20:20 2D and Color Space Conversion memory FIFO * (0 = not empty, 1 = empty). * 21:27 Unused. * 28:31 0110b * 32:52 Bits Values * 53:63 Unused * * The Status Test command will wait until the requested status * is met. The value of the Status Test register is masked with the * internal hardware state and compared to the state in the Bit Values. * If the result does not equal the Bit Values, the command list * interpreter will wait until the hardware status changes. The * pseudo code looks like this: * WHILE (Hardware State & Mask [20:0] * != Bit Values [52:32] & Mask [20:0]) NOP; */ smi_cli_status_test, /* Finish 1000b * * 0:0 If the Interrupt bit is set, the FINISH command * will generate an interrupt that can still be * masked by the Command List mask bit in the Interrupt * Mask register. When an interrupt is generated, the * Command List bit in Interrupt Status register will * be set to "1". * 1:27 Unused * 28:31 1000b * 32:63 Unused * * The FINISH command stops executing commands in the Command List * and clears the Start bit ([31]) of the Command List Address register. */ smi_cli_finish = 8, /* Goto 1001b * * 0:27 The address of the new code to execute. * Bits [2:0] are hardwired to "0" since all addresses * need to be 64-bit aligned. * 28:31 1001b * 32:32 Relative bit. If set, the specified Address is relative * to the address of the current command (signed addition). * 33:63 Unused. * * The GOTO command will jump to the Command List code located at * the specified Address. */ smi_cli_goto, /* Gosub 1011b * * 0:27 The address of the new code to execute. * Bits [2:0] are hardwired to "0" since all addresses * need to be 64-bit aligned. * 28:31 1011b * 32:32 If the Relative bit is set, the specified Address * is relative to the address of the current command * (signed addition). * 33:63 Unused. * * The GOSUB command will store the address of the next instruction * it would execute in the Command List Return Address register and * starts executing the Command List code located at the specified * Address. */ smi_cli_gosub, /* Return 1010b * * 0:27 Unused * 28:31 1011b * 32:63 Unused. * * The RETURN command will jump to the address specified in the * Command List Return Address register. The RETURN command should * terminate a subroutine that is being called by GOSUB. */ smi_cli_return, /* Conditional Jump 1100b * * 0:27 A signed relative value that will be added to the * address of the next command in the Command List if * the result of the condition is TRUE. Bits [2:0] are * hardwired to "0" since all addresses need to be 64-bit * aligned. * 28:31 1100b * 32:63 The Condition field consists of a 32-bit mask that * will be applied to the Command List Condition Register. * If the result of this mask is TRUE (any bit set), the * condition shall return TRUE and the jump is taken by * adding the signed value of Address to the address of * the next command in the Command List. * The formula of the condition is: * RESULT = Condition * Command List Condition register */ smi_cli_cond_jump } smi_cli_cmd_code_t; /* Generic command list entry that matches most commands patterns */ typedef union smi_cli_entry { struct { int64_t base : bits( 0, 27); int64_t cmd : bits(28, 31); int64_t data : bits(32, 63); } f; int64_t value; } smi_cli_entry_t; #if SMI501_CLI_DEBUG /* ensure there are "count" command list "slots" 8 bytes wide free */ #define BATCH_BEGIN(COUNT) \ do { \ if (IS_MSOC(pSmi)) { \ smi_cli_entry_t *entry; \ MSOCCmdAddrRec address; \ \ pSmi->batch_active = TRUE; \ ErrorF("BATCH_BEGIN(%d)\n", COUNT); \ /* One for finish */ \ if (pSmi->batch_index + COUNT + 1 >= pSmi->batch_length) { \ entry = (smi_cli_entry_t *) \ &pSmi->batch_handle[pSmi->batch_index]; \ entry->f.cmd = smi_cli_goto; \ /* start of buffer */ \ entry->f.base = pSmi->batch_offset; \ /* absolute jump */ \ entry->f.data = 0; \ ErrorF("wrap: from %d\n", pSmi->batch_index); \ address.value = READ_SCR(pSmi, CMD_ADDR); \ pSmi->batch_index = 0; \ } \ } \ } while (0) /* load register */ #define BATCH_LOAD_REG(PORT, VALUE) \ do { \ smi_cli_entry_t *entry = (smi_cli_entry_t *) \ &pSmi->batch_handle[pSmi->batch_index++]; \ \ ErrorF("BATCH_LOAD_REG(%x, %x)\n", PORT, VALUE); \ entry->f.cmd = smi_cli_load_reg; \ entry->f.base = PORT; \ entry->f.data = VALUE; \ } while (0) /* Appending to the Command List * * The procedure for chaining command lists is: * 1. Fill the command list buffer after the last FINISH command. * The software should always keep track of the address of the * last FINISH command. * 2. Terminate the command list with a FINISH and remember the * address of this FINISH. * 3. Stop the command list by programming "0" in bit 31 of the * Command List Address register. * 4. Read and remember the current program counter. * 5. Replace the previous FINISH command with a NOP command * (00000000C0000000). * 6. Restart the command list by programming the saved program counter * and "1" in bit 31 of the Command List Address register. */ #define BATCH_END() \ do { \ if (pSmi->batch_active) { \ MSOCCmdAddrRec address; \ smi_cli_entry_t *entry = (smi_cli_entry_t *) \ &pSmi->batch_handle[pSmi->batch_index]; \ \ ErrorF("BATCH_END()\n"); \ pSmi->batch_active = FALSE; \ /* Add new finish command */ \ entry->f.cmd = smi_cli_finish; \ /* Don't generate irq when processing the finish command */ \ entry->f.base = 0; \ address.value = READ_SCR(pSmi, CMD_ADDR); \ ErrorF("<
batch_offset) >> 3, \ pSmi->batch_finish, pSmi->batch_index); \ address.f.start = 0; \ WRITE_SCR(pSmi, CMD_ADDR, address.value); \ WaitIdle(); \ if (pSmi->batch_finish >= 0) \ pSmi->batch_handle[pSmi->batch_finish] = \ /* wait for idle engine */ \ /* just add a noop as there are 2 WaitIdle()'s */ \ /*0x180002601e0007ll*/0x00000000c0000000ll/*0x60060005ll*/; \ address.f.address = pSmi->batch_offset + \ ((pSmi->batch_finish + 1) << 3); \ /* New finish is current index */ \ pSmi->batch_finish = pSmi->batch_index; \ /* Where to start adding new entries */ \ ++pSmi->batch_index; \ /* Start executing list again */ \ address.f.start = 1; \ WRITE_SCR(pSmi, CMD_ADDR, address.value); \ do { \ address.value = READ_SCR(pSmi, CMD_ADDR); \ ErrorF("loop: %x\n", address.value); \ } while (!address.f.idle); \ WaitIdle(); \ ErrorF(">>address = %d, finish = %d, index = %d\n", \ (address.f.address - pSmi->batch_offset) >> 3, \ pSmi->batch_finish, pSmi->batch_index); \ } \ } while (0) #endif /* * 512 kb reserved for usb buffers * * In linux kernel source tree: * % grep USB_DMA_BUFFER_SIZE `find . -name sm5\*` * ./drivers/mfd/sm501.c: sm501_create_mem(sm, &pdev->resource[1], sm50x_mem_size-USB_DMA_BUFFER_SIZE, USB_DMA_BUFFER_SIZE); * ./drivers/mfd/sm501.c: sm501_create_mem(sm, &pdev->resource[2], 0, sm50x_mem_size-USB_DMA_BUFFER_SIZE); * ./include/linux/sm501.h:#define USB_DMA_BUFFER_SIZE 0x80000 * */ #define SHARED_USB_DMA_BUFFER_SIZE 512 void SMI501_Save(ScrnInfoPtr pScrn); void SMI501_DisplayPowerManagementSet(ScrnInfoPtr pScrn, int PowerManagementMode, int flags); void SMI501_PrintRegs(ScrnInfoPtr pScrn); double SMI501_FindClock(double clock, int max_divider, Bool has1xclck, int32_t *x2_1xclck, int32_t *x2_select, int32_t *x2_divider, int32_t *x2_shift); double SMI501_FindMemClock(double clock, int32_t *x1_select, int32_t *x1_divider, int32_t *x1_shift); double SMI501_FindPLLClock(double clock, int32_t *m, int32_t *n, int32_t *xclck); void SMI501_WaitVSync(SMIPtr pSmi, int vsync_count); /* Initialize the CRTC-independent hardware registers */ Bool SMI501_HWInit(ScrnInfoPtr pScrn); /* Load to hardware the specified register set */ void SMI501_WriteMode_common(ScrnInfoPtr pScrn, MSOCRegPtr mode); void SMI501_WriteMode_lcd(ScrnInfoPtr pScrn, MSOCRegPtr mode); void SMI501_WriteMode_crt(ScrnInfoPtr pScrn, MSOCRegPtr mode); void SMI501_WriteMode_alpha(ScrnInfoPtr pScrn, MSOCRegPtr mode); void SMI501_WriteMode(ScrnInfoPtr pScrn, MSOCRegPtr restore); void SMI501_PowerPanel(ScrnInfoPtr pScrn, MSOCRegPtr mode, Bool on); /* smi501_crtc.c */ Bool SMI501_CrtcPreInit(ScrnInfoPtr pScrn); /* smi501_output.c */ Bool SMI501_OutputPreInit(ScrnInfoPtr pScrn); #endif /*_SMI_501_H*/