Class

org.apache.spark.sql

KeyValueGroupedDataset

Related Doc: package sql

Permalink

class KeyValueGroupedDataset[K, V] extends Serializable

:: Experimental :: A Dataset has been logically grouped by a user specified grouping key. Users should not construct a KeyValueGroupedDataset directly, but should instead call groupByKey on an existing Dataset.

Annotations
@Experimental()
Source
KeyValueGroupedDataset.scala
Since

2.0.0

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KeyValueGroupedDataset
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def agg[U1, U2, U3, U4](col1: TypedColumn[V, U1], col2: TypedColumn[V, U2], col3: TypedColumn[V, U3], col4: TypedColumn[V, U4]): Dataset[(K, U1, U2, U3, U4)]

    Permalink

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Since

    1.6.0

  5. def agg[U1, U2, U3](col1: TypedColumn[V, U1], col2: TypedColumn[V, U2], col3: TypedColumn[V, U3]): Dataset[(K, U1, U2, U3)]

    Permalink

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Since

    1.6.0

  6. def agg[U1, U2](col1: TypedColumn[V, U1], col2: TypedColumn[V, U2]): Dataset[(K, U1, U2)]

    Permalink

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Computes the given aggregations, returning a Dataset of tuples for each unique key and the result of computing these aggregations over all elements in the group.

    Since

    1.6.0

  7. def agg[U1](col1: TypedColumn[V, U1]): Dataset[(K, U1)]

    Permalink

    Computes the given aggregation, returning a Dataset of tuples for each unique key and the result of computing this aggregation over all elements in the group.

    Computes the given aggregation, returning a Dataset of tuples for each unique key and the result of computing this aggregation over all elements in the group.

    Since

    1.6.0

  8. def aggUntyped(columns: TypedColumn[_, _]*): Dataset[_]

    Permalink

    Internal helper function for building typed aggregations that return tuples.

    Internal helper function for building typed aggregations that return tuples. For simplicity and code reuse, we do this without the help of the type system and then use helper functions that cast appropriately for the user facing interface.

    Attributes
    protected
  9. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def cogroup[U, R](other: KeyValueGroupedDataset[K, U], f: CoGroupFunction[K, V, U, R], encoder: Encoder[R]): Dataset[R]

    Permalink

    Applies the given function to each cogrouped data.

    Applies the given function to each cogrouped data. For each unique group, the function will be passed the grouping key and 2 iterators containing all elements in the group from Dataset this and other. The function can return an iterator containing elements of an arbitrary type which will be returned as a new Dataset.

    Since

    1.6.0

  12. def cogroup[U, R](other: KeyValueGroupedDataset[K, U])(f: (K, Iterator[V], Iterator[U]) ⇒ TraversableOnce[R])(implicit arg0: Encoder[R]): Dataset[R]

    Permalink

    Applies the given function to each cogrouped data.

    Applies the given function to each cogrouped data. For each unique group, the function will be passed the grouping key and 2 iterators containing all elements in the group from Dataset this and other. The function can return an iterator containing elements of an arbitrary type which will be returned as a new Dataset.

    Since

    1.6.0

  13. def count(): Dataset[(K, Long)]

    Permalink

    Returns a Dataset that contains a tuple with each key and the number of items present for that key.

    Returns a Dataset that contains a tuple with each key and the number of items present for that key.

    Since

    1.6.0

  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. def flatMapGroups[U](f: FlatMapGroupsFunction[K, V, U], encoder: Encoder[U]): Dataset[U]

    Permalink

    Applies the given function to each group of data.

    Applies the given function to each group of data. For each unique group, the function will be passed the group key and an iterator that contains all of the elements in the group. The function can return an iterator containing elements of an arbitrary type which will be returned as a new Dataset.

    This function does not support partial aggregation, and as a result requires shuffling all the data in the Dataset. If an application intends to perform an aggregation over each key, it is best to use the reduce function or an Aggregator.

    Internally, the implementation will spill to disk if any given group is too large to fit into memory. However, users must take care to avoid materializing the whole iterator for a group (for example, by calling toList) unless they are sure that this is possible given the memory constraints of their cluster.

    Since

    1.6.0

  18. def flatMapGroups[U](f: (K, Iterator[V]) ⇒ TraversableOnce[U])(implicit arg0: Encoder[U]): Dataset[U]

    Permalink

    Applies the given function to each group of data.

    Applies the given function to each group of data. For each unique group, the function will be passed the group key and an iterator that contains all of the elements in the group. The function can return an iterator containing elements of an arbitrary type which will be returned as a new Dataset.

    This function does not support partial aggregation, and as a result requires shuffling all the data in the Dataset. If an application intends to perform an aggregation over each key, it is best to use the reduce function or an Aggregator.

    Internally, the implementation will spill to disk if any given group is too large to fit into memory. However, users must take care to avoid materializing the whole iterator for a group (for example, by calling toList) unless they are sure that this is possible given the memory constraints of their cluster.

    Since

    1.6.0

  19. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  20. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  22. def keyAs[L](implicit arg0: Encoder[L]): KeyValueGroupedDataset[L, V]

    Permalink

    Returns a new KeyValueGroupedDataset where the type of the key has been mapped to the specified type.

    Returns a new KeyValueGroupedDataset where the type of the key has been mapped to the specified type. The mapping of key columns to the type follows the same rules as as on Dataset.

    Since

    1.6.0

  23. def keys: Dataset[K]

    Permalink

    Returns a Dataset that contains each unique key.

    Returns a Dataset that contains each unique key. This is equivalent to doing mapping over the Dataset to extract the keys and then running a distinct operation on those.

    Since

    1.6.0

  24. def mapGroups[U](f: MapGroupsFunction[K, V, U], encoder: Encoder[U]): Dataset[U]

    Permalink

    Applies the given function to each group of data.

    Applies the given function to each group of data. For each unique group, the function will be passed the group key and an iterator that contains all of the elements in the group. The function can return an element of arbitrary type which will be returned as a new Dataset.

    This function does not support partial aggregation, and as a result requires shuffling all the data in the Dataset. If an application intends to perform an aggregation over each key, it is best to use the reduce function or an Aggregator.

    Internally, the implementation will spill to disk if any given group is too large to fit into memory. However, users must take care to avoid materializing the whole iterator for a group (for example, by calling toList) unless they are sure that this is possible given the memory constraints of their cluster.

    Since

    1.6.0

  25. def mapGroups[U](f: (K, Iterator[V]) ⇒ U)(implicit arg0: Encoder[U]): Dataset[U]

    Permalink

    Applies the given function to each group of data.

    Applies the given function to each group of data. For each unique group, the function will be passed the group key and an iterator that contains all of the elements in the group. The function can return an element of arbitrary type which will be returned as a new Dataset.

    This function does not support partial aggregation, and as a result requires shuffling all the data in the Dataset. If an application intends to perform an aggregation over each key, it is best to use the reduce function or an Aggregator.

    Internally, the implementation will spill to disk if any given group is too large to fit into memory. However, users must take care to avoid materializing the whole iterator for a group (for example, by calling toList) unless they are sure that this is possible given the memory constraints of their cluster.

    Since

    1.6.0

  26. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  29. val queryExecution: QueryExecution

    Permalink
  30. def reduceGroups(f: ReduceFunction[V]): Dataset[(K, V)]

    Permalink

    Reduces the elements of each group of data using the specified binary function.

    Reduces the elements of each group of data using the specified binary function. The given function must be commutative and associative or the result may be non-deterministic.

    Since

    1.6.0

  31. def reduceGroups(f: (V, V) ⇒ V): Dataset[(K, V)]

    Permalink

    Reduces the elements of each group of data using the specified binary function.

    Reduces the elements of each group of data using the specified binary function. The given function must be commutative and associative or the result may be non-deterministic.

    Since

    1.6.0

  32. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  33. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped