
1

OPERATOR'S MANUAL

MODEL 2366

UNIVERSAL PROGRAMMABLE
LOGIC MODULE

2

Corporate Headquarters
700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499
Tel: (914) 578-6013 Fax: (914) 578-5984
E-mail: lrs_sales@lecroy.com

lrs_support@lecroy.com

European Headquarters
27 Blacklands Way
Abingdon Business Park
Abingdon Oxon OX14 1DY
United Kingdom
Tel: (1235) 533114 Fax: (1235) 528796
E-mail: lrs_europe@lecroy.com

Copyright© March 1996. LeCroy™ is a registered trademark of
LeCroy Corporation. All rights reserved. Information in this
publication supersedes all earlier versions.

Innovators in Instrumentation

3

CE CONFORMITY

CONDITIONS FOR
CE CONFORMITY Since this product is a subassembly, it is the responsibility of the end

user, acting as the system integrator, to ensure that the overall system is
CE compliant. This product was demonstrated to meet CE conformity
using a CE compliant crate housed in an EMI/RFI shielded enclosure. It
is strongly recommended that the system integrator establish these
same conditions.

4

5

TABLE OF CONTENTS

1. General Information
Purpose 7
Unpacking & Inspection 7
Warranty 7
Product Assistance 7
Maintenance Agreements 7
Documentation Discrepancies 8
Software Licensing Agreement 8
Service Procedure 8

2. Operating Instruction
General 9
Specifications 10
Front Panel 12

3. Applications 15
How to Program the Model 2366 16

Software
Load 2366 18
LDGP 2366 20
EPRM 2366 22

59-Bit Input Module 24
59-bit Output Register Module 30
CAMAC Dataway Test Module 38
48-Input Majority Logic Unit 44
Long Range Multihit Time Digitizer 52

6

**

IMPORTANT NOTICE: THE 2366 ULM IS SHIPPED WITH BOTH INPUT
AND OUTPUT LEVEL CONVERTERS INSTALLED. NO DAMAGE WILL
OCCUR IF THE UNIT IS POWERED WITH THE STANDARD EPROM PRO-
GRAM, WHICH DOES NOT USE THE FRONT PANEL I/O. HOWEVER,
BEFORE ANY OTHER USER PROGRAM IS LOADED, THE UNIT MUST
BE CONFIGURED WITH THE DESIRED I/O PATTERN. FOR EACH PAIR
OF SOCKETS, FOR THE 10124 AND 10125, ONLY ONE SHOULD BE
OCCUPIED. IN TOTAL, 17 ICs SHOULD BE REMOVED.

**

7

PURPOSE This manual is intended to provide instruction regarding the setup and
operation of the covered instruments. In addition, it describes the theory
of operation and presents other information regarding its functioning and
application.

UNPACKING AND
INSPECTION It is recommended that the shipment be thoroughly inspected immedi-

ately upon delivery. All material in the container should be checked
against the enclosed Packing List and shortages reported promptly.
If the shipment is damaged in any way, please notify the Customer
Service Department or the local field service office. If the damage is
due to mishandling during shipment, you may be requested to assist in
contacting the carrier in filing a damage claim.

WARRANTY LeCroy warrants its instrument products to operate within specifications
under normal use and service for a period of one year from the date of
shipment. Component products, replacement parts, and repairs are
warranted for 90 days. This warranty extends only to the originalpur-
chaser. Software is thoroughly tested, but is supplied "as is" with no
warranty of any kind covering detailed performance. Accessory products
not manufactured by LeCroy are covered by the original equipment
manufacturers' warranty only.

In exercising this warranty, LeCroy will repair or, at its option, replace any
product returned to the Customer Service Department or an
authorized service facility within the warranty period, provided that the
warrantor's examination discloses that the product is defective due to
workmanship or materials and has not been caused by misuse, neglect,
accident or abnormal conditions or operations.

The purchaser is responsible for the transportation and insurance
charges arising from the return of products to the servicing facility.
LeCroy will return all in-warranty products with transportation prepaid.

This warranty is in lieu of all other warranties, express or implied, includ-
ing but not limited to any implied warranty of merchantability, fitness, or
adequacy for any particular purpose or use. LeCroy shall not be liable
for any special, incidental, or consequential damages, whether incon-
tract, or otherwise.

PRODUCT ASSISTANCE Answers to questions concerning installation, calibration, and use of
LeCroy equipment are available from the Customer Service Department,
700 Chestnut Ridge Road, Chestnut Ridge, New York, 10977-6499,
(914) 578-6030.

MAINTENANCE
AGREEMENTS LeCroy offers a selection of customer support services. For example,

Maintenance Agreements provide extended warranty that allows the
customer to budget maintenance costs after the initial warranty has
expired. Other services such as installation, training, on-site repair, and
addition of engineering improvements are available through specific
Supplemental Support Agreements. Please contact the Customer
Service Department for more information.

GENERAL INFORMATION

8

DOCUMENTATION
DISCREPANCIES LeCroy is committed to providing state-of-the-art instrumentation and is

continually refining and improving the performance of its products. While
physical modifications can be implemented quite rapidly, the corrected
documentation frequently requires more time to produce. Consequently,
this manual may not agree in every detail with the accompanying product
and the schematics in the Service Documentation. There may be small
discrepancies in the values of components for the purposes of pulse
shape, timing, offset, etc., and, occasionally, minor logic changes.
Where any such inconsistencies exist, please be assured that the unit is
correct and incorporates the most up-to-date circuitry.

SOFTWARE LICENSING
AGREEMENT Software products are licensed for a single machine. Under this license

you may:

■ Copy the software for backup or modification purposes in support of
your use of the software on a single machine.

■ Modify the software and/or merge it into another program for your
use on a single machine.

■ Transfer the software and the license to another party if the other
party accepts the terms of this agreement and you relinquish all
copies, whether in printed or machine readable form, including all
modified or merged versions.

SERVICE PROCEDURE Products requiring maintenance should be returned to the Customer
Service Department or authorized service facility. If under warranty,
LeCroy will repair or replace the product at no charge. The purchaser is
only responsible for the transportation charges arising from return of the
goods to the service facility. For all LeCroy products in need of repair
after the warranty period, the customer must provide a Purchase Order
Number before any inoperative equipment can be repaired or replaced.
The customer will be billed for the parts and labor for the repair as well
as for shipping. All products returned for repair should be identified by
the model and serial numbers and include a description of the defect or
failure, name and phone number of the user. In the case of products
returned, a Return Authorization Number is required and may be
obtained by contacting the Customer Service Department at (914) 578-
6030.

9

OPERATING INSTRUCTIONS

GENERAL The CAMAC Model 2366 is a general purpose programmable logic
module,using state-of-the-art field programmable gate array technology.
This CAMAC module can be used as a programmable LeCroy ECLine
trigger processor module, among other uses. In addition to a full 24-bit
CAMAC interface, there are 59 front panel differential ECL I/O signals,
which (with some restrictions) can be independently selected to be either
inputs or outputs. This module is also useful as a general purpose
controller, as part of a test system or data acquisition system.

The desired logical operations are programmed in a Xilinx 4005 gate
array chip. Any logic that can be implemented as a synchronous
(clocked) state machine may be programmed, subject only to the limita-
tions of the Xilinx 4005 gate array chip (approximately 5,000 equivalent
gates). There are 3 clocks available on the board, 40, 20, and 10 MHz, or
any of 3 special front panel inputs may be used as a clock. Input and
output signals use standard 10124 and 10125 TTL-ECL level translators.
Input signals as short as 5 nanoseconds can be latched and synchro-
nized with the internal state machine logic.

The gate array must be programmed after power up, and can be
reprogrammed at any time. An on-board EPROM socket may contain
a program which is loaded on power up, or reloaded on CAMAC
command. The Xilinx chip may also be programmed directly from the
CAMAC dataway (the program information is stored in RAM in the Xilinx
chip, so there is no limit to the number of times that it can be repro-
grammed).

A few basic CAMAC function codes are implemented in hardware, and
are available on power up. These are only used to program the Xilinx
chip, and all but one of these functions disappear after a CAMAC clear
operation (F9, C, or Z).

F30 A0-A15 Enter programming mode with eprom selected,
enable all other hardware function codes.

F28 A0-A15 Select CAMAC programming mode.

F25 A0-A15 Program Xilinx chip (program pulse lasts
until the next S1).

F16 A0-A15 Write 8 bits to the Xilinx.

F12 A0-A15 Test Xilinx READY line (not usually required).

F13 A0-A15 Test Xilinx program DONE.

F14 A0-A15 Test Xilinx INIT line.

F9 A0-A15 Disable function codes except for F30
(CAMAC C, Z have the same effect).

The Xilinx chip automatically loads itself if an EPROM is installed on the
board. An F30 command followed by an F25 will cause the Xilinx chip to
be reset and reloaded from the EPROM.

10

To load a program from CAMAC, the F30 command is followed by an
F28 and F25. After the Xilinx INIT line is true (test with F14), the data is
written 8 bits at a time using F16. F12 tests the Xilinx ready line before
each write operation. This is not required unless the CAMAC host is
capable of CAMAC operations at a rate greater than 500 kHz. This
continues until all data is written and the Xilinx DONE line is true (test
with F13). The Xilinx XACT software or any of several third party gate
array software packages can be used to prepare the program file. An
example basic program is supplied which reads the Xilinx .BIT file and
uses standard ESONE CAMAC functions to load the program file into the
2366 module.

The initial program in the EPROM is T2366E (the schematic is included
in the manual). This implements a simple divide chain to flash the LEDs
with the 3 internal clocks (40 MHz, 20 MHz and 10 MHz), a 24 bit read
write register and a register which latches the CAMAC F,A,Z,I,N on every
S2. This last register is read by F0, A1. This emulates most of the test
portion of the LeCroy 2050 CAMAC dataway display and test module.

A simple basic program which exercises the 2366 is EP2366.bas. It
starts by forcing the reload of the Xilinx chip from the eprom (with
T2366E), and implements a simple CAMAC system test.

The example program LOAD2366.bas will load an arbitrary xxxx.bit
file into the Xilinx chip.

SPECIFICATIONS Single width CAMAC module

1 LED indicates N line activity

2 programmable LEDs

59 I/O signals on front panel, all are differential ECL

All front panel I/Os to and from the Xilinx chip

Input or output is selectable in groups of 4. Inputs are terminated with
112 ohms, outputs will drive 100 ohm lines.

Programmable gate array: Xilinx 4005-5, 196 configurable logic blocks
and 112 I/O blocks fast carry logic, wide decoding approximately 5000
gates: 616 flip-flops, 6272 Ram bits. This is in a 156-pin PGA socket.

The 4005-5 can be replaced with a 4005-4 or 4005-3, by the user, as
they become available from Xilinx. The socket is also pin compatible with
the Xilinx 4006.

40 MHz, 20 MHz, and 10 MHz crystal clocks on the board

Programmable by optional on board (socketed) Eprom on power up, or
by CAMAC command to reload from Eprom.

Programmable via CAMAC, at any time, independent of Eprom. Xilinx
XACT software system is required for programming. Uses Xilinx .BIT file
for programming information.

11

Basic CAMAC programming software for IBM compatible included.
11875 CAMAC F16 write operations are required to program all logic
must be clocked (synchronous logic).

CAMAC Interface: Programming, 8 bit write only interface. Test for
successful programming. After programming, all CAMAC control and
data lines (N, F, A, 24R/W, C, Z, S1, S2, Q, X, L) are available to Xilinx
chip. Only 1 function code is reserved for reprogramming, all others are
available for the user.

Possible Applications: Trigger logic, digital 48 input majority logic; trigger
or readout controller; pipelined sequential logic; pulse sequence genera-
tor; any arbitrary state machine logic; fast memory, FIFO or LIFO, 16 bit
digital adder.

CAMAC Interface Pin Assignments for Xilinx 4005-PGA156

CAMAC XILINX CAMAC XILINX
NAME PIN NAME PIN

C R10 the 24 bit read-write bus
Z T9
I E14 RW1 T16
N C5 RW2 T14
S1 T7 RW3 T10
S2 A2 RW4 R9
A1 B4 RW5 T8
A2 A3 RW6 P7
A4 B5 RW7 T3
A8 B6 RW8 P4
F1 A5 RW9 R1
F2 C7 RW10 P2
F4 B7 RW11 P1
F8 A6 RW12 N1
F16 A7 RW13 K3

RW14 K2
X G15 RW15 J2
Q G16 RW16 J3
L H16 RW17 H1

RW18 G1
RW19 F1

enables for bidirectional RW20 F2
24 bit read write bus RW21 E3
Re* T11 r1-r24 RW22 C1
Wr1* R11 w1-w8 RW23 B1
Wr2* A8 w9-w24 RW24 A1

Direction for R1-R24, normally +5 V, pin T1

40 MHz crystal clock pin B3 (PGCK1)
divide by 2 (20 MHz) pin B16 (PGCK2)
divide by 4 (10 MHz) pin T15 (PGCK3)

12

FRONT PANEL Programmable LEDs, top = D14 (red), bottom = C16 (yellow)

Front Panel Input-Output pins:

PAIR A B C D connector
NUMBER (8) (17) (17) (17) (pairs)

1 F15 R6 B2 J15
2 E16 T4 C9 J16
3 F16 R4 B9 K14
4 G14 R3 A9 K15

5 P9 N2 C10 K16
6 T6 M3 B10 L15
7 R7 L2 A10 L16
8 T5 L1 B11 M14

9 K1 A11 M16
10 J1 C12 N14
11 G2 B12 N15
12 G3 B13 P12

13 E1 A13 P15
14 E2 A14 P16
15 C2 C15 R13
16 D3 D15 T13

17 R16 B14 T2

The input (and output) polarity is such that a positive ECL edge (the odd
numbered pin on the input connector is a positive-going edge) produces
a negative TTL edge at the Xilinx input. This gives the best possible
performance for capturing short input signals (as short as 5 nsec). The
input signal should be inverted inside the Xilinx chip and used as the
clock to a D Flip Flop (with a logic 1 as the D input). This does mean that
a normal ECL logic 1 (odd pin +) becomes a logic 0 inside the Xilinx chip.
Input and output are consistent, both are inverted. We suggest as a
general rule to invert the data inside the Xilinx chip as it enters and
leaves. This allows normal positive logic to be used inside the Xilinx chip.
These extra inverters are not really extra, they are simply absorbed
inside the logic and do not usually cause any extra propagation delay.

All front panel I/O is selectable as input or output in groups of 4, as
indicated below (the 3 clocks inputs are separately selectable). This is
accomplished by installing the socketed ECL-TTL or TTL-ECL level
converters and the appropriate termination resistor networks. All inputs
and outputs are differential ECL. The corresponding Xilinx pins must be
programmed as either input or output.

For input only the 10125 ECL to TTL converters and the 56 ohm termina-
tion resistor SIPs are installed. The inputs are properly terminated for
twisted pair cable.

For output, only the 10124 TTL to ECL converters and the 390 ohm
pull-down resistor SIPs are installed.

13

Note: The module will work properly with short cables (but with reduced
noise immunity) even if both the input termination SIPs and the output
pull-down SIPs are installed.

The logical polarity of any signal is programmable in the Xilinx chip of
course. There are a total of 59 I/O signals.

1 16 pin (8 pairs) header:

I/O A 1-4
I/O A 5-8

3 34 pin (17 pairs) headers:

I/O B 1-4
I/O B 5-8
I/O B 9-12
I/O B 13-16
I/O B 17 (can be connected to SGCK1)

I/O C 1-4
I/O C 5-8
I/O C 9-12
I/O C 13-16
I/O C 17 (can be connected to SGCK2)

I/O D 1-4
I/O D 5-8
I/O D 9-12
I/O D 13-16
I/O D 17 (can be connected to SGCK3)

SGCK1, 2 and 3 are Xilinx internal clock distribution networks.

It is possible to convert the front panel I/O to bidirectional TTL. This user
modification cannot be wholeheartedly recommended, however, since
little protection is provided for the Xilinx chip. This method will only work
at low speeds (less than 1 MHz) and for very short cable lengths.
Deglitching will be needed at all receivers. The Xilinx pins cannot drive
100 ohm terminated lines. For best results we recommend using the
terminated ECL for the cable runs, and converting to TTL at the
destination circuit board. This is necessary if high speed performance
is required.

To provide TTL connections construct this 16 pin dip header with 4
100 ohm resistors, for each group of 4 to be used as TTL.

Install this header in the 10124 location after removing both resistor
packs, and both the 10124 and 10125 chips.

This user modification connects the Xilinx pin directly to the odd
numbered pin on the front panel connector. The corresponding even
numbered pin is grounded. There is no buffer, ONLY a series resistor to
prevent damage to the Xilinx chip.

14

The Xilinx chip can be programmed for either INPUT, OUTPUT or
as a TRISTATE pin.

Please Use With Care!

Pin

1 connect to 16
2 connect to 16
3 100 ohm resistor to 7
4 100 ohm resistor to 5
5 100 ohm resistor to 4
6
7 100 ohm resistor to 3
8
9
10 100 ohm resistor to 12
11 100 ohm resistor to 13
12 100 ohm resistor to 10
13 100 ohm resistor to 11
14 connect to 16
15 connect to 16
16 connect to 1,2,14,15 (ground)

Note: Only 4 100 ohm resistors are required.

15

INTRODUCTION The following section includes examples of programming the Model 2366
and examples of software to load programs into the 2366 from CAMAC.
These examples have all been tested and work as described in the
specifications. They are offered as-is, as examples only. They may be
freely used, but they are not supported products.

These examples, and others, are available for downloading from the
LeCroy ftp site (currently www.lecroy.com).

APPLICATIONS

16

HOW TO PROGRAM THE LECROY MODEL 2366 UNIVERSAL LOGIC MODULE

There are 4 steps to programming the LeCroy Model 2366 Universal Logic Module. These four steps are:

†Other techniques for this step exist, such as VHDL or Verileg™.

Step 1: Create Schematic

The very first step in programming the LeCroy Model 2366 Universal Logic Module is to produce a sche-
matic using the XILINX parts software library *. The 2366 is based on the part identified in the XILINX li-
brary as part number 4005PLG156 which is described as a gate array. The pin assignments are
described in the manual to the Model 2366 and correspond to the description given in the XILINX library.
The XILINX library also includes many varieties of gates, flip-flops, counters, registers and so forth from
which you are able to build up your design **.

In the following example, the file named test3377 represents the schematic design file which must be
converted into a format compatible with the 2366 CAMAC module.

Step 2: Convert from CAD/CAM to XILINX format netlist using XILINX programs

a) Convert to self contained netlist { lca_expand command below }
b) Convert to XILINX compatible format { erel2xnf command below }

Here are the commands used to perform these operations:

lca_expand test3377
erel2xnf test3377 -p 4005pgl56-5

The file output from the last command is called test3377.xnf and is in ASCII format. If you look at this file
you would see something like the following:

LCANET,4
PROG,EREL2XNF,4.10,Created from //node_3ec48/disk_scsi5/local_user2/richard_b/test3377
01/25/1995 10:18
PART,4005pg156-5
SYM,I$5122/I$14,DFF,INIT=R

* We use a Mentor Graphics system, however, almost any of the popular CAD/CAM programs are capable of
producing a compatibly formatted design file.

** Several examples of schematics are included in the Model 2366 user’s manual.

Step Action

1 Create Schematic†.

2 Convert from CAD/CAM drawing to XILINX formatted netlist using XILINX programs ...
generates an ASCII output file:
a) Convert to self contained netlist
b) perform format conversion to XILINX compatible format.

3 Copy ASCII file to PC and compile it with XILINX programs to generate a
binary file capable of being loaded into the XILINX chip.

4 Write binary file from PC into model 2366 CAMAC module and XILINX chip.

17

PIN,C,I,CLOCK20
PIN,CE,I,N$5581

:
:

A large section of similar stuff here...this particular example was 83,064 bytes long.
:
:

EXT,P4-8,O,,LOC=M16
EXT,P4-9,O,,LOC=N14
PWR,0,GROUND
PWR,1,VCC
EOF

Step 3: Copy the *.XNF file to a PC (or compatible computer) and compile it with a XILINX program
which generates a binary image file

The following command file (with the *.MAK extension) is used on the PC to convert the *.XNF file into a
binary file with the extension *.BIN. This example uses the XILINX software version 5. Note that the lines
beginning with a “#” are comment lines inserted to explain the contents of the *.MAK file.

########### Start of MAK file #####################
test3377.mak PC MAKE file for XILINX builds

Environment inherited macros, usually directories.
DESIGN_DIR=c:\xact\designs\test3377\

Miscellaneous files...*.XNF is input, others are outputs
SCHEM_FILE = $(DESIGN_DIR)test3377.xnf
MERGED_FILE = $(DESIGN_DIR)test3377.xff
PREP_FILE = $(DESIGN_DIR)test3377.xtf
PPR_PARAFILE = $(DESIGN_DIR)test3377.ppr

Compile and command macros
cmd_merge = xnfmerge $(SCHEM_FILE) $(MERGED_FILE)
cmd_prep = xnfprep $(MERGED_FILE)
cmd_ppr = ppr $(PREP_FILE) paramfile = $(PPR_PARAMFILE)
cmd_makebits = makebits test3377.lca

Specify ultimate target of MAK.
all: $(DESIGN_DIR)test3377.bit

Build the merged design.
$(MERGED_FILE): $(SCHEM_FILE)

$(cmd_merge)

Build final whatever.
$(DESIGN_DIR)test3377.bit: $(MERGED_FILE)

$(cmd_prep)
$(cmd_ppr)
$(cmd_makebits)

########### End of MAK file ######################

Step 4: Write the binary image file directly into the LeCroy Model 2366

At this point there is a file named test3377.bit which can be written directly into the LeCroy Model 2366
Universal Logic Module via standard CAMAC commands.

18

DECLARE FUNCTION init% (file$, var$, value!)
'
' LOAD2366.BAS
'
' this program is written for Microsoft QuickBasic
'
' NOTE!
' a single apostrophe indicates that the rest of the line is a comment
' a variable name ending in % is a 16 bit signed integer
' a variable name ending in & is a 32 bit signed integer
' a variable name ending in $ is a string
'

PRINT
fff$ = "load2366.ini"

jj$ = "camslot%"
isok% = init%(fff$, jj$, value)
IF isok% = 0 THEN

INPUT "Where is the 2366? Camac slot #"; value
END IF
modl% = value

ON ERROR GOTO fault
IF COMMAND$ = "" THEN
INPUT "Please enter the file name"; fil$
ELSE
fil$ = COMMAND$
END IF

start:

crate% = 1
CALLS cdreg(tmod0%, 0, crate%, modl%, 0)
CALLS cdreg(tmod1%, 0, crate%, modl%, 1)
CALLS cdreg(mtslot%, 0, crate%, 2, 0)

CALLS ccinit(0)
CALLS cssa(9, tmod0%, dd%, qq%)

PRINT : PRINT "RELOAD VIA CAMAC"
OPEN fil$ FOR BINARY ACCESS READ AS #1
jk$ = ""‘1 byte long

CALLS ccinit(0)
' enter programming mode
CALLS cssa(30, tmod0%, dd%, qq%)
' select camac mode
CALLS cssa(28, tmod0%, dd, qq%)
' program pulse
CALLS cssa(25, tmod0%, dd%, qq%)

' wait for init line
ttt% = 0: PRINT "INIT ";
DO

CALLS cssa(14, tmod0%, dd%, qq%)
PRINT qq%;
ttt% = ttt% + 1
IF ttt% > 10000 THEN EXIT DO

LOOP WHILE qq% < > 1
PRINT

' skip the first 16 bytes in the file
FOR i% = 0 TO 15

GET #1, , jk$
NEXT

np% = 0
DO

GET #1, , jk$
num% = ASC(jk$)
IF num% = 255 THEN EXIT DO

IF (num% > 31) AND (num% < 123) THEN
PRINT jk$;
np% = 0

ELSE
IF np% = 0 THEN PRINT "";
np% = 1

END IF
LOOP

GOSUB sendit
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
num% = num% AND 15: lengt& = num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
lengt& = lengt& * 256 + num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
lengt& = lengt& * 256 + num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
num% = (num% AND 240) / 16
lengt& = lengt& * 16 + num%
nbytes = lengt& / 8
hide% = INT(nbytes)
PRINT : PRINT lengt&; "(bits) "; nbytes; hide%; "bytes"

FOR j% = 1 TO hide%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
CALLS cssa(13, tmod0%, dd%, qq%)
IF qq% = 1 THEN PRINT "done at j%="; j%: EXIT FOR

NEXT

num% = ASC(jk$): GOSUB sendit ' one last write
CLOSE 1

PRINT "finished ";

CALLS cssa(13, tmod0%, dd%, qq%)
IF qq% = 1 THEN

PRINT "!!!success!!!"
ELSE

PRINT "***FAILURE***"
END IF
PRINT

CALLS cssa(9, tmod0%, dd%, qq%)
errnum% = 0
SYSTEM

sendit:
CALLS cssa(16, tmod0%, num%, qq%)

RETURN

fault:
PRINT "error"
SYSTEM

END

FUNCTION init% (file$, var$, value)
'
' read in an initialization file of the form:
' varname=value
' varname=value
' etc
'
' case is ignored
' one variable per line
' variables can be in any order
' init% returns as 0 for variables not found
'

19

init% = 0
ON LOCAL ERROR GOTO lerr
OPEN file$ FOR INPUT AS #1
WHILE NOT EOF(1)

LINE INPUT #1, line$
line$ = UCASE$(line$)
IF (INSTR(line$, UCASE$(var$)) <> 0) AND (INSTR(line$, "=") <> 0) THEN

jnk$ = RIGHT$(line$, LEN(line$) - INSTR(line$, "="))
value = VAL(jnk$): init% = 1

END IF
WEND

lerr:
CLOSE #1
EXIT FUNCTION
END FUNCTION

20

DECLARE FUNCTION init% (file$, var$, value!)
'
' LDGP2366.BAS
'
' this program is written for Microsoft QuickBasic
'
' NOTE!
' a single apostrophe indicates that the rest of the line is a comment
' a variable name ending in % is a 16 bit signed integer
' a variable name ending in & is a 32 bit signed integer
' a variable name ending in $ is a string
'

restart:

PRINT
fff$ = "load2366.ini"

jj$ = "camslot%"
isok% = init%(fff$, jj$, value)
IF isok% = 0 THEN

INPUT "Where is the 2366 to load? Camac slot #"; value
END IF
modl% = value

IF COMMAND$ = "" THEN
INPUT " Please enter the XXX.BIT file name to load"; fil$
ELSE
fil$ = COMMAND$
END IF

start:

CALLS gpinit
CALLS gpsic
CALLS gpron
crate% = 1
CALLS gpcini(crate%)
CALLS gpcccz(crate%)

' this is the syntax for the CAMAC subroutines
' LeCroy 8901 and National Instruments GPIB card
' CALLS GPCFSA(crate%, f%, a%, n%, int4&, xq%)
' x=1, q=2, so x&q=3

ulm% = modl%
CALLS GPCFSA(crate%, 9, 0, modl%, dd&, qq%)
GOSUB reload
CALLS GPCFSA(crate%, 9, 0, modl%, dd&, qq%)

INPUT "Load another? (y/n)"; yn$
IF UCASE$(yn$) = "Y" THEN GOTO restart

SYSTEM

reload:
PRINT " RELOAD VIA CAMAC ";
OPEN fil$ FOR BINARY ACCESS READ AS #1
jk$ = " " ' 1 byte long

rel2:
' enter programming mode
CALLS GPCFSA(crate%, 30, 0, ulm%, dd&, qq%)
' select camac mode
CALLS GPCFSA(crate%, 28, 0, ulm%, dd&, qq%)
' program pulse
CALLS GPCFSA(crate%, 25, 0, ulm%, dd&, qq%)
' wait for init line
ttt% = 0: PRINT " INIT ";
CALLS GPCFSA(crate%, 14, 0, ulm%, dd&, qq%)
IF qq% = 3 THEN GOTO rel2

DO
CALLS GPCFSA(crate%, 14, 0, ulm%, dd&, qq%)

dd% = dd&
PRINT qq%;
ttt% = ttt% + 1
IF ttt% > 100 THEN GOTO rel2
LOOP WHILE qq% <> 3
PRINT : PRINT " ";

' skip the first 16 bytes in the file
FOR i% = 0 TO 15

GET #1, , jk$
NEXT
np% = 0

DO
GET #1, , jk$
num% = ASC(jk$)
IF num% = 255 THEN EXIT DO
IF (num% > 31) AND (num% < 123) THEN

PRINT jk$;
np% = 0

ELSE
IF np% = 0 THEN PRINT " ";
np% = 1

END IF
LOOP
' start with the FF word.................

GOSUB sendit
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
num% = num% AND 15: lengt& = num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
lengt& = lengt& * 256 + num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
lengt& = lengt& * 256 + num%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
PRINT num%;
num% = (num% AND 240) / 16
lengt& = lengt& * 16 + num%
nbytes = lengt& / 8
hide% = INT(nbytes)
PRINT : PRINT lengt&; "(bits) "; nbytes; hide%; "bytes"

FOR j% = 1 TO hide%
GET #1, , jk$: num% = ASC(jk$): GOSUB sendit
CALLS GPCFSA(crate%, 13, 0, ulm%, dd&, qq%)
IF qq% = 3 THEN PRINT "done at j%="; j%; " "; : EXIT FOR
NEXT
num% = ASC(jk$): GOSUB sendit ' one last write
CLOSE 1

PRINT "finished ";

CALLS GPCFSA(crate%, 13, 0, ulm%, dd&, qq%)
IF qq% = 3 THEN

PRINT "!!!success!!!"
ELSE

PRINT "***FAILURE***"
END IF

CALLS GPCFSA(crate%, 9, 0, ulm%, dd&, qq%)
RETURN

sendit:
num& = num%
CALLS GPCFSA(crate%, 16, 0, ulm%, num&, qq%)

RETURN

END

FUNCTION init% (file$, var$, value)
'
' read in an initialization file of the form:

21

' varname=value
' varname=value
' etc
'
' case is ignored
' one variable per line
' variables can be in any order
' init% returns as 0 for variables not found
'

init% = 0
ON LOCAL ERROR GOTO lerr
OPEN file$ FOR INPUT AS #1
WHILE NOT EOF(1)

LINE INPUT #1, line$
line$ = UCASE$(line$)
IF (INSTR(line$, UCASE$(var$)) <> 0) AND (INSTR(line$, "=") <> 0) THEN

jnk$ = RIGHT$(line$, LEN(line$) - INSTR(line$, "="))
value = VAL(jnk$): init% = 1

END IF
WEND

lerr:
CLOSE #1
EXIT FUNCTION
END FUNCTION

22

DECLARE FUNCTION init% (file$, var$, value!)
'
' EPRM2366.BAS
'
' this program is written for Microsoft QuickBasic
'
' NOTE!
' a single apostrophe indicates that the rest of the line is a comment
' a variable name ending in % is a 16 bit signed integer
' a variable name ending in & is a 32 bit signed integer
' a variable name ending in $ is a string
'

PRINT
fff$ = "load2366.ini"

jj$ = "camslot%"
isok% = init%(fff$, jj$, value)
IF isok% = 0 THEN

INPUT "Where is the 2366? Camac slot #"; value
END IF
modl% = value

start:

crate% = 1
CALLS cdreg(tmod0%, 0, crate%, modl%, 0)
CALLS cdreg(tmod1%, 0, crate%, modl%, 1)
CALLS cdreg(mtslot%, 0, crate%, 2, 0)

CALLS ccinit(0)
CALLS cssa(9, tmod0%, dd%, qq%)

' REprogram using EPROM

' enter programming mode
CALLS cssa(30, tmod0%, dd%, qq%)
' program pulse
CALLS cssa(25, tmod0%, dd%, qq%)
CALLS cssa(14, tmod0%, dd%, qq%)
' wait for init line
ttt% = 0: PRINT " INIT ";
DO
CALLS cssa(14, tmod0%, dd%, qq%)
PRINT qq%;
ttt% = ttt% + 1
IF ttt% > 1000 THEN EXIT DO
LOOP WHILE qq% <> 1
PRINT

PRINT "RELOADED FROM THE EPROM ";
ttt = TIMER
DO
IF (TIMER - ttt) > 1 THEN EXIT DO
' test DONE
CALLS cssa(13, tmod0%, dd%, qq%)
IF qq% = 1 THEN EXIT DO
LOOP

IF qq% = 1 THEN
PRINT "!!!success!!!"
ELSE

PRINT "***FAILURE***"
END IF
PRINT
PRINT "enter Q to quit or R to restart"
dwrt& = 0
RANDOMIZE TIMER

CALLS cssa(9, tmod0%, dd%, qq%)
errnum% = 0

PRINT "enter Q to quit, or R to reprogram"
RANDOMIZE TIMER

FOR fff% = 0 TO 31
FOR aaa% = 0 TO 15

CALLS cdreg(mtslot%, 0, crate%, 2, aaa%)
CALLS cfsa(fff%, mtslot%, dat&, qf%)
CALLS cfsa(1, tmod0%, dat&, qr%)
df& = dat& AND (256 + 128 + 64 + 32 + 16)
df& = df& / 16
IF df& <> fff% THEN PRINT "ftest “; fff%; dat&; df&; qf%; qr%;
da& = dat& AND 15
IF da& <> aaa% THEN PRINT "atest “; aaa%; dat&; da&; qf%; qr%;

NEXT
NEXT
PRINT "Address and Function code test complete"

CALLS cccc(mtslot%)
CALLS cfsa(1, tmod0%, dat&, qr%)
PRINT dat& AND 3584;
IF dat& AND 2048 = 0 THEN PRINT "C failed ";

CALLS cccz(mtslot%)
CALLS cfsa(1, tmod0%, dat&, qr%)
PRINT dat& AND 3584;
IF dat& AND 1024 = 0 THEN PRINT "Z failed ";

CALLS ccci(mtslot%, 255)
CALLS cfsa(1, tmod0%, dat&, qr%)
PRINT dat& AND 3584;
IF dat& AND 512 = 0 THEN PRINT "I failed ";

CALLS ccci(mtslot%, 0)
PRINT " C,Z,I test complete”

PRINT "Begin 24 bit random write/read test"
PRINT
npass = 0
DO
FOR jklmn% = 0 TO 10000
 r1% = INT(RND * 4095.999)
r2% = INT(RND * 4095.999)
dwrt& = r1%
dwrt& = dwrt& * 4096 + r2%
CALLS cfsa(16, tmod0%, dwrt&, qw%)
CALLS cfsa(0, tmod0%, drd&, qr%)
IF dwrt& <> drd& THEN

LOCATE 24, 1: errnum% = errnum% + 1
PRINT “read write error”; errnum%; dwrt&; qw%; drd&; qr%

END IF
kkk$ = UCASE$(INKEY$)
IF kkk$ = "R" THEN GOTO start
IF kkk$ = "Q" THEN SYSTEM
NEXT
npass = npass + 1
LOCATE , 1: PRINT "pass complete, #”; npass;
LOOP
SYSTEM

END

FUNCTION init% (file$, var$, value)
'
' read in an initialization file of the form:
' varname=value
' varname=value
' etc
'
' case is ignored
' one variable per line
' variables can be in any order
' init% returns as 0 for variables not found
'

init% = 0
ON LOCAL ERROR GOTO lerr
OPEN file$ FOR INPUT AS #1

WHILE NOT EOF(1)

23

LINE INPUT #1, line$
line$ = UCASE$(line$)
IF (INSTR(line$, UCASE$(var$)) <> 0) AND (INSTR(line$, "=") <> 0) THEN

jnk$ = RIGHT$(line$, LEN(line$) - INSTR(line$, "="))
value = VAL(jnk$): init% = 1

END IF
WEND

lerr:
 CLOSE #1
 EXIT FUNCTION
 END FUNCTION

24

59 BIT INPUT MODULE Xilinx bit file is T2366IN.BIT

The I/O connectors should be configured as all inputs. The 10125 ECL to
TTL converters and the red termination SIPs should be installed. All
10124 ICs and all yellow pull-down SIPs should be removed. No damage
will result if the configuration is incorrect, but the module will, of course,
not function correctly.

CAMAC Function Codes F0, A0 Read 8 bits from the A input connector.

F0, A1 Read 17 bits from the B input connector.

F0, A2 Read 17 bits from the C input connector.

F0, A3 Read 17 bits from the D input connector.

In all cases, the numbered inputs correspond to the CAMAC R lines.

This module will never return X or Q.

25

Figure 1

26

Figure 2

27

Figure 3

28

Figure 4

29

Figure 5

30

59 BIT OUTPUT
REGISTER MODULE Xilinx bit file is T2366OUT.BIT

The I/O connectors should be configured as all outputs. All 10124 TTL to
ECL converters and all yellow pull-down SIPS should be installed. The
10125 ECL to TTL converters and the red termination SIPs should be
removed. This should be carefully checked, it is possible to damage the
Xilinx chip if any channels are configured as inputs.

This module also contains a 24 bit read write register, and a 13 bit last
command register. On every S2, the A line, F lines, I, Z, C, and N are
latched (A1 is R1, F1 is R5, I is R10, etc). These can be read on the next
CAMAC cycle.

CAMAC Function Codes F0, A0 Read from the internal 24 bit register.

F1, A0 Read from the 13 bit last command register.

F16, A0 Write to the internal 24 bit register.

F17, A0 Write 8 bits to the A input connector.

F17, A1 Write 17 bits to the B input connector.

F17, A2 Write 17 bits to the C input connector.

F17, A3 Write 17 bits to the D input connector.

In all cases, the numbered inputs correspond to the CAMAC R lines.

The module returns Q and X for the F0, F1, and F16 commands.
Neither Q nor X is returned for the F17 commands.

31

Figure 6

32

Figure 7

33

Figure 8

34

Figure 9

35

Figure 10

36

Figure 11

37

Figure 12

38

CAMAC DATAWAY
TEST MODULE Xilinx bit file is T2366E.BIT

This module is loaded in the eprom which is installed in the 2366 when
shipped.

This module contains a 24 bit read write register, and a 13 bit last
command register. On every S2, the A line, F lines, I, Z, C, and N are
latched (A1 is R1, F1 is R5, I is R10, etc). These can be read on the next
CAMAC cycle.

The I/O connectors can have any configuration, including all ICs and
SIPs installed (the shipping configuration). No damage will result, but the
power dissipation will be higher than normal. None of the I/O lines are
driven by the Xilinx chip.

CAMAC Function Codes F0, A0 Read from the internal 24 bit register.

F1, A0 Read from the 13 bit last command register.

F16, A0 Write to the internal 24 bit register.

The module returns Q and X for the F0, F1, and F16 commands.

39

Figure 13

40

Figure 14

41

Figure 15

42

Figure 16

43

Figure 17

44

A 48 INPUT DIGITAL
MAJORITY LOGIC UNIT Bit File: MAJOR48.BIT

Specifications 48 inputs, differential ECL. Pulse width greater than 5 nsec.
Synchronized internally with the clock.

48 bit input mask register to enable/disable individual inputs.

Output: 6 bit digital word equal to the number of inputs true within the
coincidence resolving time.

Selectable clock rate, internal 10, 20 or 40 MHz or a choice of 3 external
clock inputs (40 MHz maximum).

40 MHz output rate (40 MHz clock)

Output pipeline delay: 175 nsec (40 MHz clock)

Coincidence resolution: minimum 25 nsec, maximum 50 nsec (40 MHz
clock)

Configuration: connector A, all output, Connectors B, C, and D are all
input.

Complete schematic and Xilinx programming files are available on
request.

Description The LeCroy CAMAC Model 2366 Universal Logic Module is a general
purpose logic module using a Xilinx 4005 field programmable gate array.
The module has 59 front panel i/o signals, which can be configured as
either input or output in 7 groups of 4 channels, and 3 individual chan-
nels. In addition there is a full 24 bit CAMAC interface. The Xilinx gate
array can be programmed with an on board EPROM, or from CAMAC.

For use as the 48 input majority logic module, the 2366 is configured as
48 inputs and 8 outputs. Three of the 59 possible i/o are used for an
external clock. The 48 inputs are synchronized with the clock and trigger
a 2 clock period one-shot. The inputs are edge sensitive, triggering on
the leading edge of pulses as short as 5 nsec, Seven pipelined adder
stages sum the 48 input signals to produce the binary output word. The
output word is updated at the clock rate, with a 7 clock period pipeline
delay. A 48 bit mask register (CAMAC F16, A0 and A1, read with F0) is
used to enable (=1) or disable (=0) the individual inputs. The coincidence
resolution for determining the accidental triggers is 1.5 clock periods.
Real events must have all inputs within a span of one clock period or
less to trigger with 100% efficiency.

This program uses most of the resources of the Xilinx 4005 in the 2366
module. It uses 243 function generators (62%) and 352 CLB flip-flops
(90%). In order to operate at 40 MHz, adders with more than 3 input bits
are split into 2 pipeline stages.

Several variations of this circuit are possible. By slowing the maximum
clock rate to 20 MHz, the circuit can be simplified to four pipeline stages.
The coincidence resolution for a 20 MHz clock will be 75 nsec for

45

accidentals, and 50 nsec for real events. The pipeline delay would be
200 nsec, with a 20 MHz output word rate.

If the input signals are wide pulses, a different synchronizing circuit is
possible. The input can simply be clocked with the selected clock using
the i/o flip flop, then differentiated to produce a short pulse. This method
frees up two extra flip flops per input, which can be used to lengthen the
pulse from 2 to 3 clock periods. This changes the coincidence resolution
to 2.5 clock periods for accidentals and 2 clock periods for real events.

The output word is a 6 bit binary number which is the number of inputs
that were true during the clock period 7 clocks earlier. If 48 inputs is
sufficient, the 6 bit output word of the majority logic can be digitally
compared with a CAMAC loaded register and produce a trigger signal
directly.

For systems which require a larger majority logic unit, multiple 48 input
majority logic units can be combined. The 6 bit output word can be time
aligned (in clock steps) and added to the outputs of other majority logic
modules, using another 2366 module. A single 2366 module configured
as an adder tree can add eight 6 bit input words in 7 pipeline stages. The
output word is limited to 8 bits in this example, so the sum will limit at 255
(there can be as many as 384 inputs). If counting to beyond 255 is
required, The 2366 can be configured to have fewer inputs and a wider
output word (in units of 4 bits).

Extending this to one more level (adding another 2366 to sum the
outputs of the adders) allows six 8 bit inputs to be counted in 9 pipeline
stages (again limiting at 255). This produces a 2304 input majority logic
in a total of 25 pipeline stages (allowing one stage for going from module
to module). When using multiple 2366 modules, a common clock should
be used to synchronize the modules. Each 2366 has 3 inputs which can
be used as the external clock source.

This majority logic program consumes most of the resources of the Xilinx
chip. There is very little left with which to implement test features. A
trigger system for a large high energy physics experiment is usually very
complex, with many modules and very, very many cables and connectors
which combine the logic modules to produce the desired trigger algo-
rithm. Testing a system like this usually requires looking at signals with
oscilloscopes and logic analyzers. It also usually requires disconnecting
cables. It is usually not possible to test the system completely in situ.
This allows many possibilities for errors, and for undetected (until long
after the run) problems such as intermittent or missing connections.

The 2366 universal logic module solves this problem by allowing COM-
PLETE reprogrammability of the trigger logic. This is dynamic reprogram-
ming, on the fly, without moving a single cable of jumper anywhere in the
system. Test logic can be downloaded over CAMAC in a second or two
per module, completely replacing the trigger logic. This test logic can be
as simple as read write registers which drive the cable connections
(testing both the integrity of the connections AND verifying the topology)
to complex pattern generators which test the trigger algorithms of other
modules. When testing is finished (which could require several different
downloads of test logic) the trigger logic is simply reprogrammed with the

46

trigger algorithms and the experiment is ready to run, with a much higher
confidence level than normally found in trigger systems.

This reprogrammability also allows the trigger to be easily and quickly
changed for new requirements. If the topology is the same, or a superset
of the previous topology, then switching back and forth between the old
and new triggers can be done quickly AND safely, without touching a
cable.

CAMAC Function Codes F0, A0 Read enable mask for bits 1-24

F0, A1 Read enable mask for bits 25-48

F0, A2 Read CLOCK select register, bits 1-8

F16, A0 Write enable mask for bits 1-24

F16, A1 Write enable mask for bits 25-48

F16, A2 Write CLOCK select register, bits 1-8

CLOCK select register
0 = internal 10 MHz clock
1 = internal 20 MHz clock
2 = internal 40 MHz clock
3 = external clock, pair B17
4 = external clock, pair C17
5 = external clock, pair D17

47

Figure 18

48

Figure 19

49

Figure 20

50

Figure 21

51

Figure 22

52

A LONG RANGE MULTIHIT
TIME DIGITIZER WITH
100 NS RESOLUTION The Xilinx bit file is SLOWTDC.BIT

The top connector on the 2366 ULM, I/O A, must be configured for input.
The other connectors are not used and can be configured either as in or
out without damage to the module.

The START pulse is the OR of I/O A pins 1, 2, 3 and 4.
The HIT pulses are the OR of I/O A pins 5, 6, 7 and 8.
The minimum width for the START and HIT inputs is 10 nsec.
The inputs are edge triggered and inverted, a negative edge
(at the left hand pin) is the time to be measured.

The module should be cleared with F9, and enabled with F26. The first
START pulse is synchronized with the internal 40 MHz clock. Then the
HIT inputs, the 24 bit counter and a divide by 4 counter (with 40 MHz
input) are enabled. The divide by 4 provides a 10 MHz clock for the 24 bit
counter and the data storage FIFO. The clock remains running until the
next F9. Note that the START time is quantized with the 40 MHz clock,
and resets the phase of the 10 MHz clock.

When a HIT arrives, the pulse is synchronized with the 40 MHz clock and
triggers an updating one shot with 100 nsec output width. The one shot
can retrigger after 50 nsec.

The one shot output is synchronized with the 10 MHz clock and causes
the contents of the 24 bit counter to be stored in the FIFO. The FIFO can
hold up to 31 HIT times.

Note that the HIT time is quantized with the 10 MHz clock. The RMS
quantizing error for the time difference, HIT - START, is 30 nsec, the sum
in quadrature of the START error and the HIT error. The time zero must
be calibrated, of course.

The module must be disabled with F24,A0 before readout. The data
is read from the FIFO with F0,A0. This command returns Q true if
there was a valid data word in the FIFO.

CAMAC Function Codes F9,A0 Clear data, reset clocks, disable inputs.
F26,A0 Enable module (arm the start logic).
F27,A0 Test Enabled state.
F27,A1 Test FIFO not empty.
F27,A2 Test Start pulse received.
F24,A0 Disable Inputs (stop acquisition, put end mark in FIFO).
F0,A0 Read one data word from FIFO, Advance FIFO.

The proper sequence is:
F9, F26
a start pulse
up to 31 timing pulses within 1.6 seconds after the start
F24
F0 until no Q
The LSB of the 24 bit data is 100 nsec

53

Figure 23

54

Figure 24

55

Figure 25

56

Figure 26

57

Figure 27

58

Figure 28

